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.Data-driven algorithms for inverse design of polymers

,Kianoosh Sattari?, Yunchao Xie?, Jian Lin"®

sThe ever-increasing demand for novel polymers with superior properties requires a deeper
sunderstanding and exploration of the chemical space. Recently, data-driven approaches to explore
wthe chemical space for polymer design are emerging. Among them, inverse design strategies for
ndesigning polymers with specific properties have evolved to be a significant materials informatics
zplatform via learning hidden knowledge from materials data as well as smartly navigating the
ischemical space in an optimized way. In this review, we first summarize the progress on the
urepresentation of polymers, a prerequisite step for the inverse design of polymers. Then, we
issystematically introduce three data-driven strategies implemented for the inverse design of
ispolymers, i.e., high-throughput virtual screening, global optimization, and generative models.
»Finally, we discuss the challenges and opportunities of the data-driven strategies as well as
iwoptimization algorithms employed in the inverse design of polymers.

»Keywords: Machine learning, deep learning, inverse design, polymers, representation, generative

wmodels

21. Introduction

»Polymers have become deeply integrated into both human daily
»life and high technology due to a plethora of attractive physical,
xchemical, and electrical properties. These ubiquitous and highly
stunable properties of polymers mainly arise from extraordinary
wdiversity at both micro and macro scales.'* Though only
»containing few elements in the periodic table, polymers exhibit
sversatile functionality via finely tuning the atomic-level
wconnectivity, packing, crystallinity, phases, and
smorphology. Benefitting from these properties, polymers have

chain

afound widespread applications including biology, medicine, and
zengineering.®

s The design of novel polymer materials has been gone
athrough three stages of development. In the first stage,
sscientists  rely on  experimentally-driven  trial-and-error
sapproaches to invent materials, such as penicillin, Vaseline, and
»Teflon.® A trial-and-error approach involves significant domain
sknowledge. It starts from defining a problem or hypothesis
wfollowed by testing with a proposed solution, finally learning
ofrom failure for the next iteration.” Using the domain
nknowledge, the scientists narrow down the design space to
«=limited amount of candidates for validation. However, the
sinvolved strategy in this stage has limitations, such as by-chance
udiscovery and preparation from common chemical compounds
sfound in nature, thus limiting their potential for the next
winnovations. Moreover, they are extremely time-, labor-, and
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wcost-consuming.81! In the second stage, researchers adopt
whigh-throughput experiments or virtual screening to determine
wthe relevant properties of enormous targets, and they choose
sithe best ones for further optimization.'?'> Even though those
ssapproaches have been improved by high-throughput
s2simulations?®®, high-performance computing (HPC)’, and GPU
ssaccelerated modules,'® such a research strategy still lags the
sspace of the ever-increasing demands on the polymers with
sssuperior properties. Even for small molecules, the number of
ssstructures is estimated to be on the order of 10%°, making an
search impossible by traditional
ssexperiment and computation-based approaches.®Hence, it is

ssefficient and thorough

surgent to solve these problems to accelerate the design of
opolymers to meet the ever-increasing demands. In the third
astage, a research paradigm tackles the ‘materials-property’
eproblemin an ‘inverted’ manner, which approaches the ‘desired
procedure, or called
«“inverse design”, instead of a forward ‘structure-to-property’
ssprocedure. With advances in machine learning (ML) and deep
slearning (DL), inverse design, a new research paradigm, has

sproperties-to-appropriate materials’

semerged as an efficient tool to navigate the design space. Al is
sbeing used for predicting properties of polymers, seeking a
smapping function relating a structure to the property of
nchoice.® 2022 Deep generative models seek to learn the
nunderlying probability distribution of structures and their
ncorresponding properties for connecting them in a nonlinear
»way.® The DL algorithms can also act as the recommender
nsystems for hypothesis generation about experimental
;sconditions that are likely to produce polymers,?> 30 which,
showever, is not the focus of this review.

7  For polymers, stochastic macromolecules, establishing the
nexact recipes of polymer chains especially those possessing



icross-links or network interpenetration is impractical. Indeed,
.defining all the atoms in complex polymers is not practical since
sthe input representations are computationally expensive.
.Instead of directly using all sequenced atoms in a polymer chain
sas the source of feature representations, alternatives, such as
schemical compounds or functional groups, can be more
efficient to represent polymers.?® Even for complicated
spolymers, one needs to start with designing monomers or
sbuilding blocks since many characteristics of polymers are
wtransferred by their building blocks. There exist several works

non inverse molecule design using different architectures,3'-3°

as
»well as thorough reviews in this area.® 3¢ 37 Polymer inverse
1design, however, is still in its infancy and will bring up increased
uattention like other complex materials such as crystalline
isporous materials in the future.3® Ferguson and Ranganathan
wreviewed improvements in data-driven protein design, one
wother member of macromolecules, which can be useful for
wpolymer design studies.3®° Sherman et. al. reviewed recent
wadvances in inverse design of soft materials.3° They particularly
»addressed methodological and computational
achallenges that constrain the size and complexity of materials
»that can be designed.

limitations

s A typical flowchart of inverse design of polymers using DL
1) Data

;spreparation. In polymer research, it is still a challenge to find or

xcan be described as the following four steps.

sgenerate a sufficient volume of data. Such data can be created
»from experiments. Or high throughput computations using first-
sprinciple theory, density functional theory (DFT), classical MD,
»and coarse-grained (CG) modeling can be also used to generate
snpolymer data.'” 4% 41 Webb et al. used CG modeling to simulate
spolymers to construct a database for developing machine
zlearning models.** Another source of data can be mined from
uscientific literature or publicly available patents.?® For instance,

66

Property

sPolylnfo, an open-source database, includes information of
ssdifferent polymers homopolymers, copolymers, and polymer
ssblends.*? 2) Polymer representations. Followed by data
scollection is the numerical representation of both structures
ssand properties of polymers. Representations can use the
wapproaches from a complex and expensive one such as 3D
wcoordinates to a compact and cheap string-based one such as
#SMILES. 3) Development of the DL algorithms for inverse design.
«2ML-based prediction models can be used in the inverse design
sprocess to direct the generator toward the best candidates. 4)
«Validation. Validation of the best candidates can be through
seither computation or experiment or both. Computational
wvalidations in different scales are faster and cost less compared
»to experimental evaluation. After validation with simulation,
wsone can choose the best candidates for
wevaluation.

experimental
s We will mainly focus on the state-of-the-art data-driven
sialgorithms for inverse design of polymers, reviewing several
spromising case studies, and elaborating future opportunities in
sschemical, biomedical, and materials science fields. The review
s«focuses on Steps 2 and 3 from the mentioned workflow.
ssAlthough the importance of the predictors in the inverse design
ssprocess cannot be overemphasized, in this review, we mainly
ssfocus on deep learning and optimization algorithms that can
ssefficiently navigate the design space. Their correlation is
ssschematically represented in Fig. 1. The schematic shows two
sodifferent directions of forward and inverse design. One may
atransfer knowledge that is obtained from well-studied ML and
«DL algorithms for molecular property prediction and inverse
ssmolecular design to the polymer field. If successful, a new
sresearch paradigm for complex polymer design can be shifted
ssfrom an intuitive one to an on-demand and determinative one.
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Fig. 1 Schematic of forward and inverse materials design. Experiment and simulation from direct design map the structures to the properties. Inverse design
starts with desired properties and generates candidates. Polymer representation is used to numerically introduce the polymers for ML-based models.
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.2. Search/design space

sAs human researchers, we can operate in an unconstrained
sdesign space.*® The design space can be defined by discrete or
scontinuous variables.*? To realize the goal of inverse material
sdesign, one needs to define the design space by deciding both
;the input representation (descriptors or features as defined in
sSection 3) and a model family (e.g. deep neural networks as
odiscussed in Section 4). If all possible input parameters were
wconsidered, the design space would be massive, while, in most
ncases, the final model is only restricted to a defined space
rtrained from Thus, defining an
sappropriate design space would influence both the search
uprocess and results.** Algorithms that can efficiently navigate
isthe design space are very desired, especially for polymer design

random initialization.

wwhich involves massive possibilities, making the exhaustive
rtesting not practical.?® In the following sections, we will explain
ishow researchers define the design space for specific problems
wand discuss applications of data-driven algorithms in inverse
wpolymer design.

23. Representations and Fingerprints of Polymers
»The prerequisite for inverse design of polymers is to numerically
srepresent the polymers to be read and processed by computers.
uThese fingerprints or called descriptors should possess
»adequate chemo-structural information of the materials while
wsatisfying computational rules with as small size as possible.*
»Since the total energy of a molecule is constant with rotations,
stranslations, and symmetry operations such as mirror
»reflections of a molecule in a 3D space, a valid representation
wshould be invariant to these operations. When chosen
sappropriately, representations can accurately correlate
wstructures to properties.?”

53 Application of the representations developed for molecules
»#to polymer or macromolecular systems is not straightforward
ssbecause of the chemical, topological, and morphological
sscomplexities of the polymers.*! In two recently published
sworks, Lengeling and Guzik® and Elton et al.3® reviewed various
ssmolecular representations that can be used. Dong et al. created
wa freely available web-based platform, called ChemDes, to
wintegrate multiple state-of-the-art packages (i.e., Pybel,%® CDK,*’
#RDKit,*® BlueDesc,* Chemopy,>° PaDEL,%! and
2jCompoundMapper®?) for computing molecular descriptors and
sfingerprints.>® ChemDes provides a friendly web interface to
urelieve users from tedious programming work as well as offering
sthree useful tools for format converting, MOPAC optimization,
wand fingerprint similarity calculation.>® Molecular Orbital
+PACkage (MOPAC) is a program of implementing semi-empirical
ssquantum chemistry computation. MOPAC is mostly used with a
wgraphical user interface.”* When 3D molecular descriptors are
sused in the calculations, MOPAC can optimize the chemical
sistructures to obtain relaxed 3D coordinates.>? In a study of ML-
sassisted design of high-performance organic photovoltaic
ssmaterials, Sun et al. employed ChemDes to extract various
ssdescriptors and fingerprints for their ML models to identify the
ssbest choice of representation.?* The need for this kind of
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ssintegrated web-based platform for polymers descriptor and
s»fingerprint computation is much needed.

ss  This review focuses on representations that are specific to
sspolymers and macromolecules. They have been used as input
«ofor DL models in inverse design and virtual high-throughput
sscreening tasks. As emphasized by Chen et al, designing
zpolymers fingerprints that convey both chemical and
smorphological information, as well as their synthesis
«information, is an open challenge.*® With the fast development
0f new chemistry, materials informatics, and data-driven
ssalgorithms, a universally applicable polymer representation
«system is becoming urgent.*®

«3.1.  String-based representations from 2D graphs

«A system of molecules with atoms and bonds can be considered
nas graphs with edges and vertices.3®* Obviously, such graphs
ncannot transfer information about 3D conformations and bond
rangles and lengths. However, for most of the properties of the
nstructures, such 3D information is not needed. Thus, most
ngenerative models have not employed 3D coordinates but
sinstead worked with 2D graphs. After a polymer structure is
rdesigned, the most energetically favorable conformation can be
nextracted using classical forcefields or quantum mechanical
wapproaches.3® There are several string-based methods to
nrepresent graphs for ML/DL-based models that will be reviewed
win this review.

o Simplified molecular-input line-entry system (SMILES)> is
=Widely used to represent molecules and polymers.*> 56-58 After
ssrepresenting atoms and bonds by SMILES symbols, one needs
«to represent raw characters as one hot encode matrices to
ssperform computation. The first step for that transformation is
sstokenization from natural language, dividing the whole string
»into characters. The second step is to use one-hot encoding to
ssrepresent each character. After deciding the dataset, one needs
s 10 extract a pool of unique characters that are present in SMILES
wsequences, and then assign a numerical value to each character
awithin a sequence. To make the SMILES representations
s2compatible with ML models, one needs to encode the assigned
svalues to one-hot vectors, although the one-hot encoded
svectors are larger and increase the computational cost.?* As an
sexample, if we assign 5 to “C” representing carbon and 6 to “O”
srepresenting oxygen, a machine learning model needs to assign
,7a natural ordering between the characters. However, in case of
sthe SMILES representations, there is no ordinal relationship
wbetween the characters, making one-hot encoding easier.
wTechnically, all strings should be represented by the same
wlength in ML models. For that, researchers add special
wzCharacters at the end of the stings to have the same size for all
wthe inputs.?* Atom and bond matrices can be extracted from
10:SMILES representations.>® An atom matrix represents the atoms
wsWith their atomic numbers and can be one-hot encoded. A bond
wsmatrix is usually a 4™ order tensor showing information of
w7structures with no bond, single, double, or triple bonds between
wsatoms. These matrices are sometimes named the adjacency
womatrices and contain the same information as represented by
10SMILES.
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1 SMILES can be extended to polymers by representing the
.repeat units of polymers and specifying the connecting points
sof those repeat units.?’ 26 The transition from molecules to
«polymers representations can be challenging due largely to
sincreased complexity. For degree-1 polymers (i.e., monomers),
sthe regular SMILES representation can be used with small
smodifications. Unlike common SMILES strings for small
smolecules, these degree-1 polymer-SMILES strings contain
odistinct symbols of
wmonomers, which is used for wildcard atom in molecule

“uxn

to indicate the polymerization points of

urepresentation.®° For relatively simple polymers such as linear
zchain polymers with two connecting points or ladder polymers
swith four connecting points in each repeat unit, Tran et al. used
uSMILES to represent these two groups of polymers.?!

s The major challenge in using SMILES for DL-based inverse
wwdesign algorithms is that a large fraction of string combinations
»does not correspond to valid representations. Invalidity can be
wsyntactic or semantic. In molecule representations, Guzik and
wcolleagues represented a modified version of SMILES with a
2100% validity, a representation named SELFIES.®? Employing
aderivation rules, SELFIES uses different characters from the
zones that are used in SMILES to show chains and branches in
»molecules. The derivation of a single symbol depends on the
ustate of the derivation. They tried SELFIES in the molecule
sinverse design models.® 2 All the generated SELFIES were valid.
2,0ne sample molecule is shown in both SMILES and SELFIES in
»Fig. 2. Thiede et al. employed SELFIES representation in their
scuriosity algorithm powered by deep reinforcement learning for
»efficient exploration of chemical space to find new molecules.53
wUtilizing a predictor inside their framework, they use the error
s0f the prediction to reward the generator to explore more
zunknown candidates.
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Fig. 2 String-based representation of a molecular graph. A small organic molecule 3,4-
Methyleintenedioxymethamphetamine is used as an example. (A) SMILES
representation. The main line of atoms in green is completed with branches (opening
and closing brackets) and rings (unique numbers after the atoms that are connected).
If there is an open parenthesis without closing or only one number for a ring, that
would be an invalid structure. (B) SELFIES representation. A set of rules that restrict any
of the strings from avoiding chemical rules were used (refer to the original paper for
details). Reproduced from Ref.6! published under the terms of Creative Commons

Attribution 4.0 license.
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s Proposed by O’Boyle and Dalke, DeepSMILES is another
ssmodification of SMILES in a way to improve the validity of the
ssgenerated strings. Unlike SELFIES, DeepSMILES does not provide
»100% validity, but it improves a higher validity than original
sSMILES.®* There is an opportunity for future studies on string-

4 | Soft Matter, 2021, 00, 1-3

wbased polymer that are valid for
wcombinations.

s Ramprasad and co-workers employed modified SMILES for

representations any

zpolymers, in which endpoints or connection points of repeat
sunits were represented using special symbols.? 26 As shown in
«Fig. 3, they used [*] to represent connecting points between the
srepeat units.?! Polymer chain, repeat unit, and SMILES of two
wpolymers from linear and ladder groups are shown in Fig. 3.
wAlthough low-level representations such as SMILES can depict
wexplicit polymer structures, the strings have large lengths and
whard to parse. To represent polyurethane with a chain of length
30 for example, 600 characters that are
scomputationally expensive.’> Thus, low-level SMILES-based
srepresentation is not suitable for large polymers.®°

one needs

53
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Poly (naphthalene-2,3:6, 7-tetrayl-6, 7-dimethylene)
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Polymer chain Repeat unit

Fig. 3 Polymer chains, repeat units, and SMILES representations of linear polymer
poly(isobutylene) and a ladder polymer poly(naphthalene-2,3:6,7-tetrayl-6,7-
dimethylene). The connection points are shown with “*”. Reproduced from Ref.2

with the permission from AIP publishing.
54

ss  Trying to modify the SMILES to fit polymers, Lin et al.
ssintroduced BigSMILES as a compact yet structurally robust
widentifier or a representation system.”® As shown in Fig. 4,
s BigSMILES can be used for different organic materials, including
sshomopolymers, random copolymers, and block copolymers
oWith various molecular connectivity, from linear and ring
apolymers to branched polymers.*> They used two kinds of
sbonding descriptors. The first type is AA type bonding that can
sshappen between any two bonding moieties. The second type of
s«bonding, AB bonding, like DNA rules, a bonding moiety cannot
ssconnect directly to another from the same group but can
sconnect to one from a different conjugate group. This is the
esituation in monomers polymerized with condensation
sreactions.* Besides using all the strings in SMILES, BigSMILES
suses extra strings to handle the stochastic nature of polymers.
nThere are many details about their descriptors, which can be
nreferred in their paper.*® They proposed a descriptor system to
nrepresents many kinds of polymers, but they did not test it for
»developing ML/DL design. Trying this
nrepresentation in a DL-based inverse design is an opportunity

for materials
»for future research. However, as this representation approach
wrelies on the predefined fragments extracted from a training
»dataset, the fragments of a generated structure is limited to the
npredefined ones. Although no implementation of SELFIES and
»DeepSMILES in representing polymers is reported, they can be
smodified in the same way as BigSMILES was modified from

a«SMILES for polymer representations. Unlike low-level

This journal is © The Royal Society of Chemistry 2021



representations such as SMILES, high-level approaches such as
:Big SMILES are suitable for large polymers. However, they are
150 high-level that they cannot convey explicit information about
+the complete polymer structures.®>
SMILES Representation
for Organic Moleculems
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Fig. 4 Schematic of BigSMILES. Curly brackets separate repeat units that include
multiple monomers. Reproduced from Ref.%8, Copyright 2019 American Chemical
Society.
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;7 Guo et al. recently reported PolyGrammar, a parametric
scontext-sensitive grammar (CSG), to solve limitations of SMILES
sand BigSMILES for polymer representation.®®> CSG is a formal
wgrammar that defines how to build strings from a language’s
nalphabet obeying a set of production rules (see left side of Fig.
125).5%> PolyGrammar represents a molecular chain structure as a
sstring of symbols, each of which refers to a particular molecular
ufragment in the polymer chain. The generation process begins
swith an initial symbol. At each iteration, each non-terminal
wsymbol in the string is replaced by a successor whose
wpredecessor matches the symbol until the string does not have
wany non-terminal symbols (see Fig. 5, center). The hypergraph
10is used to translate the resulting symbol string to a polymer
wchain (see right side of Fig. 5). In an ordinary hypergraph, nodes
znand edges between the nodes represent atoms and bonds,
2respectively.®® The hypergraph allows individual nodes to join
zany other nodes. An edge that connects a subset of the nodes
»in the hypergraph is called hyperedge.®” These production rules
»smake them appropriate to represent many classes of polymers
»for valid structural generation. In their studies, polyurethane
»was tested as a proof-of-concept. Nevertheless, further studies
sare needed to make PolyGrammar generable to generate valid
»strings of more classes of polymers.
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Fig. 5 Schematic of chemistry design model, PolyGrammar. In centre, molecular chain
structure as a string of symbols is shown. PolyGrammar has a set of production rules
shown on the left. The generation process begins with an initial symbol x and
substitutes each non-terminal symbol (h, s or ) at each iteration by the successor of a
production rule whose predecessor matches the symbol. The process stops when there

is no non-terminal symbol. Reproduced from Ref® with permission.
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2 All the mentioned string-based representations mainly
ssconsidered element composition and simplified structures of
sthe polymers. They quite ignore architectures, stochastic nature
5s(PDI), and the processing history of the polymers. These are
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sscritical factors in  determining their Thermal

wconductivity, for example, can be significantly different in the

properties.

sssame type of a polymer but processed into different forms, such
was laminated films or spun fibers due to anisotropic molecular
worientation.®® Wu et al. found that the thermal conductivity
asignificantly depends on the processing history of the polymers.
«2As such information has not been experimentally reported, they
»failed to derive a predictive model for thermal conductivity
udirectly from the given data. Thus, they considered proxy
sproperties—related to thermal conductivity—such as glass
wtransition temperatures and melting temperatures as the
walternative targets.

#3.2. 2D/3D information
»The Hohenberg-Kohn theorem of DFT proves that the electronic
sscharge density of a system is a universal representation with the
atotal of the information about the system.®® The material
wfingerprints can be chemo-structural descriptors

sfundamental as electronic charge density.?® Using electronic

or as
sscharge density is the most accurate way to represent a system
ssbut is not feasible for a large system such as polymers. Pilania
sset al. conducted a similarity-based machine learning model to
fingerprints replace the complicated and
sscumbersome rule based on Schrodinger’s or Kohn-Sham
sequation.?®

o  Using SMILES as input, directly
afingerprinted by employing hierarchical polymer fingerprints,?%
2% or represented by molecular fingerprints.5® 70 Usual kernels
sextract features of the molecules, hash those features, and
«utilize the hashed features to determine bits that should be set.
ssGenerally, kernels are functions that take two objects (data
sspoints, structures) as the input and assign a scalar output value
«to compare the similarity of the two objects.”* Typical
sfingerprint sizes are between 1K to 4K bits. Barnett et al. utilized
wa Daylight-like fingerprinting algorithm from the RDKit
npackage®® in their ML-based framework to design exceptional
npolymer membranes for gas separation.’® Daylight is a software
»that delivers a state-of-the-art chemical information processing
nmethod. Daylight molecular fingerprints contain a) a pattern
nrepresenting each atom and its closest neighbors and the bonds
»that connect them; b) a pattern corresponding to each group of
atoms and bonds connected by paths up to seven bonds. Their
»topology-based approach analyzed the various fragments of a
rsmolecule consisting of a certain number of bonds and hashed
»each fragment to a binary fingerprint.” They broke a polymer’s
srepeat unit down into fragments containing between 1 and 7
siunits and the structure was hashed into a 2048 bits fingerprint
2to encode all the possible connectivity pathways of the
ssmonomer.”?

«  Another promising way named hierarchical fingerprints to
ssrepresent polymers has been introduced by Kim et al. in an ML-
ssmodel for polymer property prediction.?® They introduced three
«levels of descriptors at different length scales (Fig. 6). At the
satomic-scale level, the existence of a fixed set of atomic
wfragments or motifs is tracked. As an example, a triplet of “O1-
0»C3-C4” shows oxygen connects to one atom, a Carbon
ssconnected to three atoms, and another Carbon connected to 4

ssextract to

polymers are either

Soft Matter, 2021, 00, 1-3 | 5



1atoms in the same order. They extracted 108 such components
.from the dataset they used.?® Next, in a larger level from an
sRDKit Python library,*® they used van der Waals surface area,”?
.the topological polar surface area (TPSA),”3 the ratio of atoms in
srings to the total atoms, and the fraction of rotatable bonds.?®
sEach of the mentioned descriptors in QSPR is crucial for
saccurately predicting properties. For example, TPSA is the sum
sof surfaces of polar atoms in the molecule that is a key
sdescriptor for Tg; and density. Lastly, “morphological
wdescriptor”, the highest length-scale descriptor, includes
undescriptors such as the shortest topological distance between
rrings, and the length of the largest side-chain.?® They also
isconsidered a recursive feature elimination (RFE) algorithm to
uremove the least important features. Lightstone et al. utilized
isthis hierarchical fingerprint system to build an ML model for
spredicting the Refractive index of polymers.?? This hierarchical
i»fingerprint system can also be used in generative models. Very
srecently, Kuenneth et al. modified this approach to represent
wcopolymers, an attempt to extend the polymer informatics
wbeyond monopolymer.”* To do that, first, fingerprints of the
arepetitive units of a copolymer were extracted. After that, these
»fingerprints were weighed according to the ratio of the
monomers in the copolymer. For instance, C1 and C2 are the
uratios of each monomer (unit) in a two-monomer copolymer. If
sone of the ratios is zero, it indicates a homopolymer74.

26
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Fig. 6 A hierarchical fingerprint system. This classifies descriptors according to the
physical scale and chemical characteristics and RFE process to remove unnecessary
features. Reproduced from Ref.26 with permission. Copyright 2018, American
Chemical Society.
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s In another recently published work, Ramprasad and co-
»workers introduced a general atomic neighborhood fingerprint
snmethod to represent polymers.”> They incorporated basic
sicomponents, rotational invariants, and structural features in
nthe representation system. To represent basic components,
sthey employed grid-based representation for the local atomic
senvironment, which includes a hierarchy of features capturing
ssvarious aspects of the atomic neighborhood (semi-local). To
ssfingerprint rotationally invariant components, they considered
wsome transformation of basic components to make them
srotationally invariant to cover cases involving directionless
wquantities.” Finally, they conducted structural fingerprints from
wpredefined components. Based on the application, one can
unincrease the sophistication of the proposed fingerprint to obtain
»a desired level of accuracy. As an example, Huan et al.
usinvestigated the use of just the vector components from basic
uwcomponent category to develop force fields for elemental Al,
+sCu, C, and more.”®

6 | Soft Matter, 2021, 00, 1-3

w  After fingerprinting polymers, one can define a suitable
wsmeasure of chemical distance to quantify the degree of
ws(dis)similarity between two defined fingerprints for developing
wan ML model with high accuracy, which was demonstrated in
soPilania et al.’s work.?® For example, Kernel Ridge Regression
s1(KRR) is a non-linear regression model that can determine of
s2similarity of input objects.”” KRR combines ridge regression and
ssclassification with kernel machines.”® The Kernel machines are
ssa class of models originally developed for pattern analysis. They
ssrequire a user-defined kernel and a similarity function to
ssperform tasks of clustering, rankings, and regression.”® Using
ssthe hierarchical fingerprint system for developing ML-based
ssmodels for polymer property prediction is quite successful.?!- 26
ssHowever, introduction of the fingerprints needs extraction of a
sopool of components that make the distinguished fragments of
spolymers. This process requires pre-processing of training
«~datasets. Disadvantage of this method is that one needs to
ssdefine the pool for each dataset, which make it not generable
sand cannot be used for generating new polymers consisting of
ssthe fragments outside the existing pool.

«3.3.  Group contribution

<A group contribution approach was demonstrated by Van
sKrevelen and co-workers, where a polymer is broken down into
wits fragments (groups). From these fragments, the property of
nthe polymer can be predicted.®® The group contribution
nmethods assume any property is a sum of contributions from
=building blocks that are independent of each other. This is
nreferred to as quantitative structure-property relationship
7(QSPR).8010:27 The group of representations are fast and easy to
sbe interpreted.?’” However, since this approach relies on the
ravailable fragment library, for truly novel polymers (outside the
npredefined library) that are generated by inverse design, group
wcontribution techniques are powerless.?® Thus, the group
mcontribution methods may not be optimal for new materials
ssdiscovery but can be useful for feature extraction and property
sprediction of many polymers.’® They can be also used to
szgenerate low-fidelity data, which although noisy, can be
sscombined with high-fidelity data by multi-fidelity information
sfusion schemes such as multi-fidelity co-kriging.8!

s By the group contribution techniques, researchers
ssfingerprint the predefined building blocks of polymers.38 Webb
wet al. employed a hybrid approach, by which all polymers are
ssconstructed from four possible coarse-grained (CG) beads (a, B,
»6, and y). a and B were used to form the backbone of the
swpolymers, while & and y were used to form pendant groups that
siadorn the backbone.*! They defined 10 different building blocks
»0ut of these beads. Within this defined chemical space, they
«sdefined three different classes of polymers. Class (I) includes
uregular polymers with up to four building blocks. Class (ll)
ssincludes random copolymers with up to four unique building
sblocks in the polymer sequence. Class (lll) is similar to Class ()
»but with up to eight building blocks.*! All the bead types and
stopologies of polymers are represented in Fig. 7A. They
wconsidered three classes of polymers created from these
wbuilding blocks (Fig. 7B). They then used one-hot encoding
11 (OHE) and property coloring that reflects polymer compositions
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1to extract feature vectors. These vectors were later fed to a
.deep neural network (DNN) model. To extract property
sfeatures, the polymer was encoded as an image with each bead
+of the polymer represented by a pixel (Fig. 7C). The coloring of
sthe markers represents the polymer composition. In this way,
sthe application of the data-driven models was extended from
shomopolymers to copolymers.
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Reproduced from Ref.! with permission, Copyright 2020, AAAS.

9

4. Strategies for Inverse Design of Materials

uThe traditional materials research paradigm heavily relies on a

zforward design principle where the properties of materials are

spredicted from given structures. However, this process is time-

uand labor-intensive and cannot meet the ever-increasing

isdemands of developing novel materials cost-effectively and

wspeedily. Inverse design, on the other hand,

»paradigm via receiving desired functionality or properties as

inverts this

sinputs for generating the desired structures.® This process can
wbe done in two different ways. The first way is called the high
»throughput virtual screening (HTVS), one of the earliest efforts
ain inverse design.” HTVS can narrow the hypothesized chemical
»space to find the best candidates possessing targeted
sproperties.”  The second way includes smart searching
ualgorithms, i.e., global optimization (GO) to navigate the
»schemical space and DL-based generative models (GMs) to learn
sshidden knowledge from the training data.

»4.1.  High throughput virtual screening (HTVS)

By high throughput virtual screening approaches, one needs to
»narrow the chemical space by defining specific building blocks
swand bonding rules. The model can then make hypothesized
sicandidates, and those candidates can be tested with the help of
»an ML-based predictor or high-throughput simulation, such as
=DFT and MD.#2 Here, the user defines the inputs and ensures
usthat any combination of these inputs (fragments or building
ssblocks of polymers) is valid. Although HTVS seems like a version
s0f the direct approach for material design, its core philosophy is
»different.” 3 First, it focuses on the data-driven discovery that
wincludes automation and time-critical performance.” Second,
»HTVS possesses a computational with promising
wcandidates assessed by more expensive methodologies.’

funnel
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aFeedback between theory and experiment is a crucial
wingredient. It is true that the validity of the generated structures
by HTVS is higher than that of the ones generated from GM, but
uthe generation is limited to the hypothesized chemical space.'*
82

w To generate novel polyimides (Pls) with exceptional
wrefractive index (RI), Afzal et al. defined 29 building blocks for
#Pls’ core structures.®? Definition of 29 building blocks (see Fig.
+8B) and their bonding rules are shown in Fig. 8A. They initially
ssgenerated 6.6 billion compounds. To restrict the search among
s:a more manageable number of candidates, they chose only the
ssmost promising 100 R; and 100 R, with high Rl values, resulting
s3in 10,000 Pl candidates. R1 and R2 are arranged in the polyimide
ssstructures (Fig. 8A). The possible molecular building blocks used
ssto create R1 and R2 are represented in Fig. 8B. R1, represented
ssby green shapes, are linkers and can be chosen from 6 possible
s7linkers in the polyimide structure. R2, shown by blue shapes, are
ssmoieties and can be chosen from 23 possible hetero-aromatic
ssmoieties in the polyimide structures. Also, R in molecular
sbuilding blocks (in Fig. 8B) defines allowed sites for linking.
siFinally, they utilized the HTVS approach to screen them for the
s2best candidates with the highest IR.
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R2. R in building blocks shows allowed sites for linking. (B1-B6) are linkers marked in
green, and blue ones. B7-B29 are hetero-aromatic moieties. Reproduced from Ref.82
with permission. Copyright 2019, American Chemical Society.

o
s  Moreover, we can employ simulation results to provide
sfeedback for chosen candidates. Accordingly, with guidance
«from a high throughput hierarchal modeling scheme that is
sinvolved combinatorial exploration based on DFT followed by
ssuccessive screening, Treich et al. synthesized novel dielectric
nmaterials with high energy density for film capacitors. They
nconsidered the organic polymers that were formed by linear
rcombinations of seven basic chemical building blocks.?

7 When experienced chemists have hypotheses that can
ndefine a narrowed screening space, they employ HTVS to exploit
sthe space.® Manually performing a HTVS is computationally
sexpensive and even impossible for many cases as it requires
»computational capabilities that allow a large number of
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icalculations to run parallelly.’®* Going beyond the existing
-hypotheses and broadening the search space need more
sintelligent approaches. As proposed by Knapp et al., automation
+is a potential solution.'® In the next section, we review some
sadvanced algorithms, i.e., GO and GMs, for the inverse design
sof polymers. They can catch hidden information from a
sstructure-property-paired database for generating novel

sstructures that do not exist in the database.

+4.2. Global optimization (GO)

10GO, including but not limited to Bayesian optimization (BO),
uparticle swarm optimization (PSO), and genetic algorithm (GA),
»finds optimal solution of the target objective function and can
sbe employed in the inverse design of polymers.3* Multi-
1objective optimization needs a fitness function to consider how
isthe global objective is created by the individual objectives. The
iwevaluation of polymer candidates to check whether they meet
»the desired property objectives, i.e., computation of fitness
wfunction, is a crucial component of GO-based algorithms.®> One
wconsideration when defining a fitness function is to normalize
»the objectives to minimize their differences.

214.2.1.
»Bayesian optimization (BO) is a sequential design strategy
swithout assumption of any functional forms. Many material
utasks can be considered as the optimization problems where
;scontrollable parameters must be updated to reach desired
w0objectives. A proper optimization algorithm should be noise-
»tolerant, global, and convergent with as few inputs as possible.
»Satisfying these requirements, BO is a systematic approach to
»find a global optimum of an unknown function f which is
swexpensive to be evaluated.86 87-89

s BO is constructed by Bayes’ joint
ndistribution can be decomposed hierarchically into product of
sconditional and marginal distributions in the following formula:

Pposterior(sly € U) x Plikelihood(y € UIS)Pprior(S) (1)

Bayesian optimization (BO)

theorem where a

ssWhere Pposterior(S|Y) is the posterior probability of a model,
sshypothesis, or theory S given input data (observations) Y. It is
ssproportional to the likelihood of Y given S multiplied by the prior
wprobability of 5.°° When specifically applied to the polymer
sdesign, S can be a polymer structure for which the polymeric
sproperties Y lie in a desired region U.%® With a desired region U
wgiven Y, it affords Pjirerinooa(Y € U|S), the probability that
udefines goodness of fit of S with respect to the property
wrequirement. Prio(S) can be used to reduce the occurrence of
schemically unfavorable or unrealistic structures and then assign
ulower probability to them.

s Wang et al. proposed an ML-assisted coarse-grained
wmolecular dynamic (CGMD) model to design highly conductive
wpolymer electrolytes.88 They created a continuous high-
wdimensional design space from a discrete chemical space by
wcoarse-graining the chemical species (Step 1 and Step 2 shown
sin Fig. 9). They then employed a BO algorithm to efficiently
siexplore this space via autonomous CGMD simulations to predict
s2the relationships between the transport properties and the
ssassociated CG parameters (Step 2 and Step 3 shown in Fig. 9).
s«The constructed design space and the corresponding material

8 | Soft Matter, 2021, 00, 1-3

ssproperties served as the input and output of the model,
ssrespectively. They then employed a BO algorithm to efficiently
ssexplore this space via autonomous CGMD simulations to predict
ssthe relationships between the transport properties and the
ssassociated CG parameters (from 2 to 3 in Fig. 9). The
sconstructed design space is input, and the target material
sproperty is the output of the model.

2  The procedure of running the BO algorithm includes the
«following steps: (1) select a prior for the possible space of
sfunction f; (2) estimate the posterior given the prior and current
sssimulation data; (3) employ the posterior to decide the next
sscalculation to evaluate according to an acquisition function; (4)
<obtain the new data from the simulation. They iterated 2-4
ssteps to explore the CG design space until convergence.
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Fig. 9 lllustration of a CGMD-BO framework. A coarse-graining process transforms the

chemical space to a continuous space composed of CG parameters (from 1 to 2). BO
algorithm explores the space to predict the properties with given CG parameters (from

2 to 3). Reproduced form Ref.88 Copyright 2020, American Chemical Society.
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n  Accessing large high-quality data in polymer research is still a
»nbig challenge, sometimes making it difficult to simply use just
»one GO for inverse polymer design. To tackle this challenge, Wu
net al. employed a combination of BO and a sequential Monte
»Carlo (SMC) method for the discovery of polymers with high
sthermal conductivity.®® Their model creates a chemical space S
77(encoded by SMILES symbols) consisting of polymer repeat units
n(monomers), for which nth polymeric properties ¥ = (Y, ..., ¥y,)
»lie in a desired region U. They then employed Bayes’ law to
winvert the forward model (§ — Y) to obtain a backward model
ap(S|Y € U)(Y — S). They. then used a sequential Monte Carlo
2(SMC) method to draw random samples represented by the
s SMILES strings (S) from high-probability regions of the backward
smodel. Since the experimental thermal conductivity data was
slimited, when constructing the BO model, they considered
swproxy properties of glass temperature (Tg) and melting
»temperature (T,,) which are in correlation with the thermal
sconductivity as the alternative targets. In addition, they use
mextended connectivity fingerprints of the SMILES as the input of
wtheir prediction model. They designed the monomers but with
sasmaller training datasets compared to other molecular
sgenerative models using standard SMILES representation.3% 3>
9391

%4.2.2. Particle swarm optimization (PSO)

ssIn PSO, a bunch of optimizers (particles or agents) moves in a D-
sdimensional search space. Each agent is composed of four
ssvectors, namely position, velocity, the best position found by
sitself based on the objective function, and the best position
»found by its neighbors.

1w Multiblock polymers are a class of soft materials with
wmspontaneous self-assembly variety of ordered
wzmesophases at the nanoscale.®? Khadilkar et al. employed PSO

into a
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1as a global optimizer combined with a forward prediction
:engine to the inverse design of polymers that have target bulk
smorphologies.®> The relevant variables are the polymer
sarchitecture parameters, namely chain block fractions, blend
sfractions, and interaction strength. They employed PSO in
smulticomponent search spaces. They wused PSO for
shomopolymers and diblock copolymers. The 4-dimensional
ssearch space is restricted to only the block fraction of the
sdiblocks. One can refer to their paper for the details on the
woptimization approach and parameter selection. One way to
ubroaden the use of PSO is by directly targeting properties
zinstead of through structures that were conducted in their
isresearch. Kumar et al. conducted high-accuracy tunning of
upoly(2-oxazoline) cloud point via machine learning techniques.
isThey defined a design space of four repeating units and a range
1sof molecular masses. 22 They performed inverse design via PSO
»with design selection using a group of neural networks,
wdesigning, and synthesizing 17 polymers at 4 target cloud points
wfrom 37 to 80 °C.

24.2.3. Genetic algorithm (GA)

xGenetic algorithm (GA) is an evolution-based search algorithm
»that can tackle the problem of inverse polymer design. It uses
»the idea of natural selection with steps of crossover, mutation,
#and selection. GA is a type of evolutionary algorithm that
»mimics the “survival of the fittest” to design or optimize a
xdesired structure with target properties.®* Meenakshisundaram
»et al. conducted a GA to design sequence-specific copolymers
»from data generated by molecular dynamic (MD) simulations.®*
»The copolymers consist of 20 repetitive units of two types of
ssmonomers, which are represented by 0 and 1 binary numbers.
s The GA determined the fitness of each candidate by analyzing
=the results calculated from the MD simulations.

;3 Kim et al. combined GA with ML-based predictive models to
udesign polymers possessing useful property criteria.®> To do
sthat, first, they used hierarchical polymer fingerprinting
ss(explained in the representation part) to represent the
wpolymers followed by a Gaussian process regression to map the
wstructures to properties.®” They then use GA to evolve
swgenerations of polymer candidates toward targeted objectives.
»To design polymers with target properties of glass transition
atemperature (Tg) of > 500 K and bandgap (Eg) of > 6 ev, Tgand Eg
ware included in the fitness function. Later, the ML-based
spredictive models can check the candidates from this fitness
ufunction. The GA process follows three steps.

1. Beginning with a randomly generated polymer candidates,
wthey used crossover and mutation to produce new polymer
wcandidates by changing the chemical building blocks and their
wsequence (Fig. 10A). They extracted 3,045 building blocks with
1 to 4 endpoints from ~ 12,000 reference polymers (Fig. 10B).
ssEndpoints represented by “*” act as a connection between
sichemical building blocks.® For example, one homopolymer has
2@ monomer with two endpoints. They initiated 100 polymers
ssconsisting of 8 building blocks in their repeat units. During
sscrossover, offspring were generated from two parent polymers
sswith one random segment. The mutation was also utilized to
ssdiversify the “gene pool”. During the evolution, offspring

This journal is © The Royal Society of Chemistry 2021

sspolymers that do not follow chemical rules or polymer
ssassembling rules were removed.

2. The ML models were used to predict the properties of the
sgenerated candidates and evaluate their fitness outcome from
sithe proposed fitness function.

«23. The best candidates as parent polymers in each generation
swere kept for the next-iteration evolution.

s«  The mentioned steps were iterated until enough polymer
sscandidates with desired properties were generated. They used
«two properties Ty and Eg for evaluation purposes (shown in Fig.
«10C).

s GA starts with a randomly generated initial population with
»no prior knowledge, while they can improve the generated
ncandidates with the feedback from ML-based prediction
nmodels.®> Obviously, the prediction models need labeled data
»to learn how to map the structures to specific properties. To
accelerate the optimizations and evolutions, one can bias the
ninitial population towards the favorable building blocks with the
iassistance of prior knowledge to narrow the searching space.®
Although GAs are general-purpose, stochastic, evolutionary
»search and optimize strategies, there is no guarantee of their
wconvergence.® Moreover, their performance depends on the
»internal parameters that need trial and error to be tuned.®®
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14.3. Generative models (GMs)

:Recent advances in ML have introduced powerful probabilistic
sgenerative models (GMs) capable of generating realistic
ssynthetic samples after being trained on real samples.® From a
sstatistical point of view, with an observable variable X and a
starget variable Y, a GM estimates a joint probability distribution
;of Xand Y, P(X, Y). P(X, Y) can later be used to generate new data
ssimilar to the existing data.’” GMs can encode the high-
odimensional chemical space into the continuous latent space
owith a lower dimensionality, from which the new data is
ugenerated.® In this section, we summarize the state-of-the-art
zdeep learning approaches that have been used for inversely
sdesigning polymers with targeted properties. Fig. 11 represents
uschemes of four DL-based GMs, namely recurrent neural networks
15(RNNs), variational autoencoder (VAE), reinforcement learning (RL),
and generative adversarial networks (GAN).

17

RNN ,
t
U Xiq Xy X1
U‘ 4 %
Y h , . W, ,
t | h e by g by ht+1“4ht+2

Optimization

Interpolation
v oo

o I:atent Space» Decoder
O i r:n~f\,\‘£;"‘ - : o o
=% w5
g = s a =
_____ F e B
RL 1 Action
Y -
RLAgent| ssses | State
seeseee
T - i 7\ Environment
gy |
Reward
i Ré-GAN """"""""""" Regressor |
g Discriminator Real
E TN
Oz 32 ;'>c
m - - o
o P :
Target
Property Fake

Fig. 11 DL-based algorithms for GMs. From top to bottom: Recurrent Neural Network
(RNN), Variational Autoencoder (VAE), Reinforcement Learning (RL), and Generative
Adversarial Network (GAN).
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1v4.3.1. Recurrent Neural Network (RNN)

wRecurrent neural network (RNN) is designed to predict the
afuture event based on the current and past information, as
»shown in Fig. 11.°% Unlike other feed-forward networks that
sneed static input data, RNN can handle arbitrary input
usequences.”® The current input vector, xy, and the past
sknowledge, h(1), are concatenated to a complete input vector

10 | Soft Matter, 2021, 00, 1-3

»wat the time step £ Learning the information from the previous
»iterations makes RNN suitable for generating sequential data,
xswhere the information about the future is highly conditioned on
»the past information and current input.®0 100. 101 RNNs have been
anwidely and successfully employed in molecular drug design.%
31102—105

» One challenge of applying RNNs to the polymer design is the
nlarge size of the polymer sequence. Polymers have long,
scomplex structures. For a generative model, it should enable
sscapturing the long-term temporal dependencies during the
sgeneration RNNs can remember
winformation, such as previous characters if polymer chains are
srepresented by SMILES, to learn dynamic behavior for the
wfuture generation steps. The original vanilla RNNs (Fig. 10),
whowever, suffer from issues of vanishing and exploding
uagradients, limiting their ability in learning long-term temporal
»dependencies.'®® The gradients include information used to
supdate the parameters of the RNNs. Vanishing gradients
whappen when the updates are insignificant, resulting in no real
slearning. Exploding gradients, on the other hand, happen when
wthe updated parameters are too large, making the model
wunstable.

procedure. previous

By applying a gradient clipping technique, one can limit the
wmagnitude of gradients to prevent exploding gradients, while
sthe vanishing gradients can be addressed by several gating
smechanisms.'% These mechanisms are implemented in two
swell-known variants of RNNs: long short-term memory
53(LSTM)1%7 and a gated recurrent unit (GRU)3.102 An LSTM
ssnetwork has three gates to regulate the flow of information,
ssnamely forget gate, input gate, and output gate.'%” Given the
ssnew information, the forget gate decides what information the
sscell state should forget. The input gate determines the newly
ssencoded information from the new inputs. Finally, the output
sscontrols what information should be sent to the next step.!%”
«oThe cell state derivative prevents the LSTM gradients from
sibeing vanished. GRU has a similar mechanism as the LSTM but
«With only two gates: the update gate and the reset gate.?® These
stwo gates decide which hidden state information should be
ssupdated. In both LSTM and GRU, the networks learn to skip
ssirrelevant temporary information. Cheng et al. provided in-
ssdepth discussion of LSTM and GRU by empirically comparing
«their performance.103

s LSTM and GRU have been used to predict protein functions
sWith given sequences as well as the aqueous solubility of drug-
nlike compounds.1% Popova et al. employed a Stack-RNN with a
nnewly defined cell structure added to the regular GRU cell to
rlearn long-term interdependencies with a target of designing
»new molecules.!®® With the development of LSTM and GRU,
#RNNs have shown increased power for polymer design. Ma and
sLuo employed an RNN for the generation of 1-degree polymers
7(i.e., monomers) using SMILES representations.®® As shown in
»Fig. 12, the future output (o-cell) is the result of the hidden state
s (h-state) using the previous step (memory about the past) and
»the current step (present input).®® They repeat the loop for
wmany iterations, and the performance of RNN in each iteration
sis assessed by the ratio of the valid samples. However, their
zwork has two limitations. First, it can only be used for
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1generating simple polymers (i.e., monomers). Second, their
.generation process is not considered inverse design since they
sdid not target any property in advance.
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Fig. 12 An RNN architecture for the generation of homopolymers. In an RNN, O-cell
generates future output, while h-cell (hidden state) is memory about the past, and X-
cell is present input, where U, V, and W are parameters. Reproduced from Ref.% with
permission, Copyright 2020, American Chemical Society.
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+4.3.2. Variational Autoencoder (VAE)

;A variational autoencoder (VAE) proposed by Kingma et al.1%®
semploys a variational inference framework to estimate the
sinput data distribution p(x) and can be trained with gradient-
wnbased methods.®® It uses an encoder-decoder architecture to

Review

wintroduced crucial modifications in SMILES grammar and
wpolymer-specific semantics to increase the validity of the
agenerated structures.’'! To do that, they first converted the
2SMILES strings to parse trees. They then utilized context-free-
sgrammar parse trees as input for the encoder to convert them
«to continuous latent vectors. The derived latent vectors
sscontaining chemical and structural information help to build
waccurate predictive models for property predictions. To design
winnovative polymers possessing targeted properties, they
wsemployed simple enumeration followed by a generative
winterpolation approach.

s4.3.3. Reinforcement learning (RL)

siReinforcement learning (RL), designed to tackle dynamic
=decision challenges,' includes analysis of possible actions and
ssapproximation of the statistical relationship between the
ssactions and possible outcomes. They are reinforced by the
ssdetermination of a treatment regime that is optimized towards
ssthe most desirable outcomes.''? Very recently, RL achieved
sbetter performance than humans in the game of Go,*'? which
sshas the complexity of 1014 possibilities.' It is analogous to the
sscomplexity of chemical space, which makes RL-based networks
ssuitable to be applied to the inverse design of materials.1%8

« As an example of the most successful works in RL for
smaterials design,®® 115 116 popova et al. proposed a deep RL
«(DRL) for generating chemical compounds with desired physical,
sschemical, and activity properties (see Fig. 13).1°¢ They combined
«two deep neural networks (a generative model (G) and a
«predictive model (P)) in the DRL framework. Playing the role of
<an agent, G generates novel molecules. Playing the role of a

nreconstruct the input features (or material representations) x wcritic, P outputs the properties of the novel structures and

zand the output X in a two-step process (Fig. 11).® The encoder
iconstructs a continuous vector in the latent space from the
uinput features, while the decoder converts these continuous
isvectors back to the input features. A continuous representation
wallows better usage of powerful gradient-based optimization
1vmodels to decode random vectors and interpolate structures.
1sThen novel and valid chemical structures can be generated by
wsimple operations in the latent space, such as interpolating
nbetween the sampled random vectors of the chemical
astructures.® Furthermore, a continuous representation allows
»the usage of powerful gradient-based optimization approaches
»to decode random vectors and interpolate structures more
xsmartly.® Bombarelli et al. employed the VAE framework to
sensure that samples in the latent space correspond to valid and
»snovel molecular structures.®

7 VAEs can be utilized for the inverse design of materials as they
sbridge the gap between neural networks and probability
»models for a large and complicated dataset.2% Jgrgensen et al.
swproposed a grammar variational autoencoder (GrammarVAE)
aforinverse design of a class of donor-acceptor polymers.1° They
sused SMILES representations combined with grammar rules to
sincrease the validity of the generated SMILES. The grammar
urules are changed by the decoder so that it can only generate
sssyntactically valid strings.

3  Batra et al. utilized a syntax-directed VAE combined with
;;Gaussian process regression (GPR) predictive models to
sdiscover polymers with targeted properties. In this work, they
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wassigns a numerical reward/penalty to the candidates. G learns
»to maximize the reward by improving the generated structures
nwith properties close to desired ones.
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Fig. 13 A workflow of an RL algorithm for a compound generation. Reproduced with
permission from Ref.198, AAAS.
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#4.3.4. Generative adversarial networks

s A generative adversarial network (GAN) includes two
sscompeting networks of a generator and a discriminator.*” The
»generator generates sample data from random noise, while the
wdiscriminator examines the data to judge whether it is
nsynthesized (fake) or sampled from the training dataset
w(real).’¥” Competition of the generator and the discriminator
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iimproves both networks in such a way that the generator can
:generate so real data that the discriminator cannot distinguish
sthem.®® GANs are well known for their ability to learn complex
+high dimensional data and reproduce them by following similar
sdistributions.®? Among various DL algorithms, GANs bring in a
sbreakthrough for materials discovery.''® GANs can utilize
;different architectures such as CNNs,3* AEs, and RNNs to
simplement the algorithms.52 Meanwhile, GANs also suffer from
sa serious issue of mode collapse. Among various solutions,
wminibatch discrimination and feature mapping have been
uintroduced to solve this issue.’® Another way to avoid mode
zcollapse is to penalize the model if it generates repetitive (non-
zunique) sequences.®? Although fully-connected networks have
ubeen used for the original GAN model,'” recent studies have
isutilized different architectures such as CNNs,3* AEs, and RNNs.%2
1« To enable on-demand data generation, the unsupervised
7GAN model can be modified by adding labeled information as
wthe input condition, which is named the conditional GAN
1»(CGAN).*?0 Following CGAN, auxiliary classifier GAN (ACGAN)
wadopted discrete and qualitative labels in the objective function
afor training the ACGAN, which makes the model suitable for
»discrete and qualitative labels.??! Improving ACGAN, a semi-
»supervised reg-GAN was developed for generating images from
squantitative labels. However, the reg-GAN distinguishes the
»ssynthesized data from the real data by predicting the label first,
xwthen compares the difference between the predicted and the
»desired ones. To do that, a pre-set range of numbers is needed,
swhich requires human intervention. Since their birth, GANs
»have transformed various fields ranging from image, speech, to
swmaterials science.?? Nevertheless, these aforementioned GANs
sido not meet the criteria for generating material structures with
zexplicitly given properties (represented by continuous labels)
sdue to the lack of a mechanism of generating data in a
uregressional and conditional manner. In a study proposed by
ssDong et al,3* to overcome the limitations in the previous GANs,
sthey demonstrated a regressional and conditional GAN
7(RCGAN), which meets two criteria for inverse design of
smaterials: 1) it generates distinguished structures from the real
wstructures used for training; 2) it can accurately perform a
wgeneration task based on input quantitative labels. RCGAN can
ube potentially used for inversely designing molecules and
«wpolymers. As RCGAN uses a convolutional neural network (CNN)
wsarchitecture, the generator generates all structures at once. But
w«in an RNN architecture that has been employed in most GANs
sfor the molecular inverse design, the generator generates a
wsingle character of a SMILES string at once. CNN-based GANs are
wmore suitable for bigger systems such as polymers. Although
sRNN-based models may generate structures with higher
wvalidity, they are much more expensive for computing
sspolymeric systems.

514.3.5. Hybrid architectures

s2Some hybrid architectures that combine GANs with other
ssalgorithms, e.g., RL, to tackle the challenge of inverse design of
sspolymers have been proposed. Although GANs have been
sswidely employed in drug and molecule inverses design, their
ssapplication in polymers design faces grand obstacles.?® First,
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sseven with a properly defined polymer representation, the input
ssdata is larger and more computationally expensive than that of
ssmolecules. Second, one needs to consider the polymer
sarchitecture that defines the way of branching or networking of
athe polymer chains.’?®> With a longer sequence of data, one
=needs to modify the architecture of a generator to handle this
sschallenge.®> %6 For a GAN model, for example, it is more difficult
«for the generator to mimic the real data in a way that the
ssdiscriminator distinguish them from the real

ssstructures.®® RLs, on the other hand, can be used to tune the

cannot

sproperties of the generated samples toward desired values.
sResearchers combined various GANs structures with RL
scomponents in a way to direct the generator to generate
nmolecules with targeted properties (see ORGANIC framework in
nFig. 14).3% 62 124 The RL components add a reward to the
rndiscriminator to bias the employed RNN generator to create
nstructures with a single or a set of target properties. The focus
7+0f this kind of hybrid model (combination of GANs and RL) is to
generate a bunch of samples that follow a targeted range of
sproperties (a proper distribution). So far, mentioned hybrid
»models were conducted for molecule design. It is envisioned
wthat such hybrid architectures will emerge for inverse polymer
ndesign.

New
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Fig. 14 Schematic of hybrid architecture of ORGANIC, with three fundamental
components: a generator, a discriminator, and a reinforcement metric. Reproduced
from Ref.3
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«5. Conclusion

22 Within this review, we have systematically surveyed the recent
ssprogress on the inverse design of polymers. First, the
ssprerequisite, i.e., numerical representations of polymers that
sssave as much as structural and topological information, was
sssummarized. Then, three mainstream data-driven algorithms
wincluding HTVS, GO, and GMs for inverse design were outlined
ssand their advantages and disadvantages were discussed.
sAlthough the inverse design has been advanced in the past
wdecade, many challenges remain to be addressed. Two main
saones as follows are considered as the most interesting and
s2pressing.

+5.1.  From homopolymers to complex polymers

«Polymer informatics tools have been recently growing for
sefficiently designing new polymers possessing targeted
sproperties. However, as we discussed in the previous sections,
smost of the data-driven algorithms focus on molecules or
shomopolymers.”* With simple modifications, molecular
wrepresentations, such as SMILES, can be used to represent

This journal is © The Royal Society of Chemistry 2021



thomopolymers.10> 125,126 However, for more complex polymers
:such as copolymers, polymer blends, and polymers with
sadditives, the simple extension may not be applicable.*° Very
srecently, Kuenneth et al. attempted to address the issue by
sdeveloping new representations for predicting properties of
scopolymers, which opens a new route to developing state-of-
;art deep learning algorithms for copolymers design.

s Most of the computational data for polymers are based on
oDFT calculations of their monomers or small oligomeric
wspecies.* * Polymers as macromolecules, however, contain
umore structural and conformational information. Direct first-
zprinciple calculations of the whole macromolecule chains are
snot possible. Webb et al. proposed a targeted sequence design
ufor copolymers in an attempt to use coarse-grained (CG)
isclassical modeling for data generation.*' They predefined
building blocks and employed feature extraction approaches to
ivbuild the input representations for their deep learning model,
sWhich afforded quite impressive results.

15.2.  Architectures of polymers

»Defining design space of polymers is critical for polymer design.
21n most works of inverse polymer design, researchers consider
»a simplified and restricted design space while ignoring the
sstructural complexity of polymers such as their architectures.!?3
uArchitectural features such as branches, stars, and
»sbottlebrushes of the polymers can largely affect their physical
wproperties, including solubility in different solvents, glass
rtransition temperature. They can be even crucial for some
sbiopolymers such as DNA polymerized from four different
»monomers. Srinivasan et al. employed a genetic algorithm (GA)
»to design DNA-grafted particles that self-assemble into desired
acrystalline structures.®> The employed GA framework initiates
»the DNA-grafted particle population for predicting
sssuperstructures formed using these building blocks.

+x5.3.  Active learning

;s0ne significant challenge of applying data-driven algorithms of
ssinverse materials design is the lack of sufficient high-quality and
wlabeled data. To tackle this challenge, one can employ active
sslearning, a paradigm in which the ML models direct the learning
wprocedure themselves through dynamic suggestions for the
whext iteration of operation.?” 128 Kim et al. employed active
ualearning for the discovery of polymers with high glass transition
«=temperatures (Tg). Starting with an initial small dataset of
spolymers, they use an ML-based predictive model
wconjunction with an active-learning framework to iteratively
isadd the new candidates. The active learning model decides the
wrange of exploitation and exploration for selecting the next

in

wexperiment. In this design, having an accurate predictive model
wis important. In addition, employing a suitable representation
wsystem for the polymers is crucial. Active learning for inverse
ssdesign of polymers begins with utilizing hybrid GMs, elaborated
s:in - previous sections, to generate candidates possessing
s2targeted properties. Then an active learning architecture can be
ssused to provide feedback to guide the model to generate
ssinnovative structures with properties outside the range of the
sstraining dataset. This can be a method of doing extrapolation.

This journal is © The Royal Society of Chemistry 2021
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