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Mid-infrared spectroscopic imaging (MIRSI) is an emerging class of label-free techniques being lever-
aged for digital histopathology. Modern histopathologic identification of ovarian cancer involves
tissue staining followed by morphological pattern recognition. This process is time-consuming, sub-
jective, and requires extensive expertise. This paper presents the first label-free, quantitative, and
automated histological recognition of ovarian tissue subtypes using a new MIRSI technique. This
technique, called optical photothermal infrared (O-PTIR) imaging, provides a 10× enhancement in
spatial resolution relative to prior instruments. It enables sub-cellular spectroscopic investigation of
tissue at biochemically important fingerprint wavelengths. We demonstrate that enhanced resolution
of sub-cellular features, combined with spectroscopic information, enables reliable classification of
ovarian cell subtypes achieving a classification accuracy of 0.98. Moreover, we present statistically
robust validation from 78 patient samples with over 60 million data points. We show that sub-cellular
resolution from five wavenumbers is sufficient to outperform state-of-the-art diffraction-limited tech-
niques from up to 235 wavenumbers. We also propose two quantitative biomarkers based on the
relative quantities of epithelium and stroma that exhibits efficacy in early cancer diagnosis. This paper
demonstrates that combining deep learning with intrinsic biochemical MIRSI measurements enables
quantitative evaluation of cancerous tissue, improving the rigor and reproducibility of histopathology.

1 Introduction
Epithelial ovarian cancer is the leading cause of death among
gynecological malignancies in the United States. Serous ovar-
ian cancer, its most common subtype, is often diagnosed at a
late stage (III or IV), where 5-year survival is 51% and 29%, re-
spectively.1 Standard treatments involve surgery and at least six
courses of chemotherapy.2 Several novel compounds have been
studied and approved over the past 20 years; however, none sub-
stantially modify overall survival.3 The most decisive prognos-
tic factor remains the complete eradication of neoplastic tissue
through radical surgery.4–6 Outcomes are affected by (1) late di-
agnosis resulting in unresectable disease and (2) unclear iden-
tification of neoplastic margins. Therefore, objective and early
identification of neoplastic tissue are essential for optimal surgi-
cal attempts.

Recent advances reveal the complex organization of the ovar-
ian tumor microenvironment, highlighting inter-cellular path-

a Address, 4226 Martin Luther King Boulevard, N308 Engineering Building 1, Houston
TX, 77584, USA; E-mail: rkreddy@uh.edu

ways7 as potential treatment targets. New methods quantifying
biomolecular characteristics reveal detailed structural and molec-
ular changes that may reveal novel therapeutic targets. The surgi-
cal pathological staging systems (International Federation of Gy-
necology and Obstetrics staging, FIGO staging) continue to be
the most crucial tool for determining stage in ovarian cancer.8

The FIGO staging criteria for cancer are based on the extent of
spreading of tumor cells from the ovary. This is determined by
using contrast-inducing stains on biopsy sections followed by mi-
croscopic examination by a pathologist, which has been the cur-
rent clinical standard for ovarian cancer diagnosis. Hematoxylin
and eosin (H&E) stain is widely used to identify cellular and ex-
tracellular components. Epithelial carcinoma is the most common
histologic type, accounting for about 90 percent of cancers of the
ovary, fallopian tube, and peritoneum.9,10 In high-grade serous
carcinoma (HGSC), a pathologist identifies various architectural
patterns, including complex papillary, glandular, microcystic, and
solid patterns. HGSC infiltrates, destroys, and/or replaces the
normal stroma. Therefore, histological identification of cellular
subtypes is an important step11 in ovarian cancer diagnosis and
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prognosis.
Inter-pathologist variability is a significant challenge,12 and

grading schemes have been proposed to reduce this vari-
ability.13–15 However, these methods have only been success-
ful in resource-rich hospitals with comprehensive training.16

Automated and semi-automated techniques to reduce inter-
pathologist variability, especially in lower-resource settings, are
critical for equitable care.17–19 Automated tissue subtyping is an
essential step in this effort.

Automated tissue classification into the epithelium and stroma
subtypes is challenging, and several techniques have been pro-
posed. Most use H&E20–22 and immunohistochemical staining23

combined with machine learning (ML). Staining quality and vari-
ability can confound ML and lead to inconsistent results.18 Im-
munofluorescence staining has effectively detected circulating tu-
mor cells that can form micro-metastases in other organs beyond
the original tumor site.24 25 But the specificity of stains for a
biomarker/cell type can render it ineffective in detecting a dif-
ferent biomarker/cell type. However, this issue has been ad-
dressed recently by employing sequential fluorescent quenching
and re-staining26, effectively allowing subsequent fluorescence
staining targeting different markers multiple times.27 However,
this method is limited by the number of antibodies that can be
used for a limited set of stains, and the process of staining itself
can cause a change in the structure and biochemical composition
of the tissue. Our goal is to perform label-free recognition of tis-
sue subtypes without using chemical contrast agents. Moreover,
we obtain intrinsic quantitative and repeatable biochemical mea-
surements that are independent of operator tissue processing.

Spectroscopic techniques are used widely to identify molecules
in chemical and biochemical analysis28 with high sensitivity and
specificity. Vibrational spectroscopy is used routinely to iden-
tify organic biomolecules by matching measurements to large
commercial spectral libraries containing over 260,000 spectra.29

Prior work on label-free ovarian tissue analysis has utilized spec-
troscopy. Raman spectroscopy,30–32 conventional Fourier Trans-
form Infrared (FTIR) spectroscopy,33–35 and attenuated total re-
flection (ATR) FTIR spectroscopy36,37 have been applied to de-
tect and diagnose ovarian cancer. However, prior work lacked
spatial specificity and required long data collection times. MALDI
imaging38 has also been used to analyze ovarian histotypes; how-
ever, this technique destroys the sample. Second-harmonic gener-
ation (SHG) can identify collagen in the stroma,39–41 and multi-
photon microscopy42 has been used on murine tissue. Raman
imaging has been used for ovarian cancer diagnosis and tissue
analysis, often with added nanoparticles43,44 to obtain more ro-
bust signals. Taken together, none of these techniques provide
classified images in an automated, label-free, quantitative, and
non-destructive manner.

Mid-infrared spectroscopic imaging (MIRSI) can extract spec-
tral and spatial information without using contrast agents by uti-
lizing intrinsic biochemical properties of tissue. This technology
is non-destructive and therefore compatible with other technolo-
gies.45 Fourier transform infrared (FTIR) spectroscopic imaging,
the best known MIRSI technology, can classify cell subtypes in a
variety of diseases, including breast,46 lung,47 prostate,48 and

colon49 cancers. We hypothesize that it is also helpful for ovar-
ian cancer tissue subtyping. HGSC is the marked cytologic atypia
with prominent mitotic activity in ovarian tissue. The atypical
nuclei are hyperchromatic with an over threefold variation in nu-
clear size. Phosphate spectroscopic peaks (1080, 1201, 1236,
1262 cm−1) corresponding to nucleic acids strongly correlate to
mitotic activity, and spectroscopic imaging has shown increased
phosphate signals in a variety of cancers.50–52.

FTIR imaging is limited by the diffraction of mid-infrared light
(2.5 µm - 11 µm). Since typical cells are of 5µm in size, FTIR imag-
ing cannot provide sub-cellular information potentially important
for analysis. Optical-photothermal infrared (O-PTIR) imaging
overcomes this resolution limitation. This technique combines
a visible laser beam and a mid-infrared beam in a pump-probe
architecture and estimates the sample’s absorbance by measuring
the change in intensity of the visible laser caused by the pho-
tothermal effect. Therefore the image resolution is determined
by the wavelength of visible light (0.5 µm), which is much shorter
than the wavelength of IR light incident on the sample, allowing
5x to 22x improvement in spatial resolution.53,54 The improved
spatial resolution is comparable to an optical microscope image,
as demonstrated in Figure 1. This technology has been used pre-
viously for studying the chemistry of inorganic 2D perovskite and
allowed us to understand the edge emission phenomenon in in-
organic 2D perovskite.55 O-PTIR has also been successfully used
in chemical imaging of live human ovarian cancer cells,56 where
high resolution is needed to analyze sub-cellular structures in a
small area. However, our work is the first large-scale (78 can-
cer patients) study of clinical ovarian tissue biopsy samples, each
with large sample areas (1 mm diameter each).

Machine learning algorithms, including random forest (RF)
and Bayesian classifiers, use individual spectra to classify tissue
from MIRSI data. These approaches do not leverage spatial in-
formation, although MIRSI provides both spatial and spectro-
scopic information. Convolutional neural networks (CNNs) are
deep learning architectures that learn local spatial features. CNNs
have been successful in hyperspectral57 and mid-infrared spectro-
scopic classification of breast cancer tissues.58 Traditional CNNs
consist of alternating convolution and pooling layers, followed
by a fully-connected classifier. In this paper, we use CNNs to
determine the impact of improved O-PTIR resolution on classi-
fication. Previous work in ovarian cancer spectroscopy relied on
point spectra to identify malignant tissue or grade tumors.32,36

We report the first application of the O-PTIR tissue classification
and the first reported application of MIRSI and deep learning to
ovarian histology.

1.1 O-PTIR imaging

Photothermal microscopy obtains a measurement of sample ab-
sorbance by estimating the thermal expansion caused by the ab-
sorption of infrared light using a co-localized visible laser beam.
The visible and IR laser are incident on the sample collinearly, as
shown in Figure2. The thermal expansion caused in the sample
due to IR absorbance causes variation in the refractive index due
to the photothermal effect. This change in refractive index is de-
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H&E FT-IR O-PTIRH&E

Fig. 1 Spatial differences between different cell types in FT-IR image
on the left, H & E image in the center and O-PTIR image on the right.
Cropped regions around pixels from the same core in FT-IR and O-PTIR
images collected at 1664 cm−1.

tected by measuring the change in intensity of the back-reflected
green laser (visible laser) using a point detector.

QCL (IR) Green Laser Sample

(a) (b)

(c)

(d)

(e)

(f)

Fig. 2 Schematic of the optical path of the IR and green (532 nm) lasers
in our O-PTIR instrument. A pulsed Quantum Cascade Laser (QCL)
shown in (a) is the source of mid-IR light which acts as a pump causing
photothermal expansion at the sample. A Continuous Wave (CW) green
laser shown in (b) is incident collinearly on the sample and acts as a
probe beam. A dichroic mirror (c) combines the green and QCL light
and focuses them on the sample (e) using a reflective Cassegrain objective
(d). The modulation in the intensity of the green light (f) scattered back
from the sample enables the measurement of its IR absorbance.

1.1.1 Improved Spatial Resolution

FTIR has been the standard spectroscopic imaging technique for
characterizing a material’s chemistry. While FTIR provides spec-
tral data across all mid-infrared wavenumbers, its spatial resolu-
tion is diffraction-limited by the long wavelengths of light result-
ing in modest image quality. O-PTIR overcomes this limitation
and provides higher spatial resolution (0.5 µm) images, with data
quality comparable to H&E stained microscopy images. Figure
1 compares the image quality of O-PTIR, FTIR, and H&E on the
same cancer tissue. The improved spatial resolution of O-PTIR
relative to FTIR is evident. Furthermore, O-PTIR data quality is
comparable to microscopy data after H&E staining on an adjacent
section. Finer spatial details in the epithelium and stromal tissue
regions are also observed in the O-PTIR data presented in Figure

1.

2 Materials and Methods
An ovarian biopsy tissue microarray (TMA) was obtained from
Biomax US, Rockville, MD (TMA ID: BC11115c) and imaged
using O-PTIR. The TMA consists of paraffin-embedded cores
mounted on a 1 mm thickness CaF2 substrate. These cores are
from separate patients with cases of normal, hyperplastic, dys-
plastic, and malignant tumors. The patient cohort was com-
posed of women aged 29 to 69; ovarian tumor stages varied be-
tween stage I to stage IIIC; histological subtypes include clear cell
carcinoma, high-grade serous carcinoma, and Mucinous adeno-
carcinoma. The deparaffiniztion was done following the proto-
col along the lines as described in 50 before undergoing O-PTIR
imaging. The paraffin-embedded samples were deparaffinized by
washing the sample in 100 percent xylene twice for 5 minutes
each and then with 100 percent ethanol thrice. The correspond-
ing adjacent histological section was stained with H&E and ex-
amined by an expert pathologist. Cell subtypes were identified
across disease stages. We trained a random forest (RF) classifier,
support vector machine (SVM), k-nearest neighbor (KNN), and a
CNN model by using the cores on the left half of TMA for training
and testing on the other cores on the right half of TMA, ensuring
that training pixels and testing pixels come from mutually exclu-
sive cores on TMA.

2.1 Data acquisition

FTIR images were acquired using an Agilent Stingray imaging sys-
tem equipped with a 680-IR spectrometer connected to a 620-IR
imaging microscope with a numerical aperture of 0.62. Each core
was imaged with 16 co-additions in transmission mode at a spec-
tral resolution of 8 cm−1 truncated from 902 cm−1 to 3892 cm−1,
and a pixel size of 1.1 µm.We collected the background scan at
128 co-additions and ratioed to the single beam data to remove
spectral contributions from the substrate, atmosphere, and globar
source.

The adjacent H&E stained TMA was imaged with a Nikon in-
verted optical microscope with a 10X, 0.4NA objective in the
brightfield mode, and has diffraction-limited spatial resolution in
the visible range (0.4 µm - 0.7 µm).

The O-PTIR dataset was acquired using a Photothermal mI-
Rage microscope with a silicon photodiode, a pixel size of
0.5 µm×0.5 µm and a 0.65 numerical aperture. A Quantum Cas-
cade Laser (QCL) source sweeps through the range of 902 cm−1 to
1898 cm−1. Each core was imaged at five selected wavenumbers
(1162 cm−1, 1234 cm−1, 1396 cm−1, 1540 cm−1, and 1661 cm−1 ).
An image of the entire TMA acquired at the Amide I band is
shown in Figure 3. Background spectra are collected with 10
co-additions and used to normalize the raw data to calculate the
IR absorbance at each band. Band images are then normalized
with Amide I (1664 cm−1) to bring the data range between 0 and
1. Note that some tissue biopsies are missing because the col-
lected data was corrupted. We used an Aperio Scanscope system
to acquire the Light microscope images of the whole slide’s H&E
chemically stained sections.
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Max

Min

1 mm

Fig. 3 O-PTIR microarray (8×10) shown at band 1664 cm−1. Data from
78 ovarian cancer patients is shown. The biochemical variations in tissue
are evident from the differences in color in the Figure. Machine learning
algorithms combine biochemical data from multiple bands enabling tissue
subtype identification and disease diagnosis.

2.2 Feature Selection
Since the O-PTIR signal is detected using a point detector, the
time taken to collect an image of a single core varies between
90 to 100 minutes per wavenumber.59 Collecting a hyperspectral
data cube of a core at all wavenumbers (900 cm−1 to 1900 cm−1

at 2 cm−1 spacing) would take approximately 35 day. We, there-
fore, collect fewer bands, focusing on acquiring important bio-
chemical information. These wavenumbers are determined by
analyzing FTIR spectra of ovarian tissue to determine absorbance
peaks corresponding to functional groups relevant to ovarian tis-
sue analysis based on prior work. We acquired O-PTIR data at
wavenumbers 1162 cm−1, 1234 cm−1, 1396 cm−1, 1540 cm−1, and
1661 cm−1 (Figure 4), which correspond to glycogen, amide III,
nucleic acids and lipids, amide II, and amide I, respectively.50,60

2.3 Data annotation
Two pathologists labeled areas in tissue cores as stroma or epithe-
lium using H&E stained microscopy data. H&E with IR images
were aligned manually, and the labels were transferred to O-PTIR
images to create annotated data for machine learning. The TMA
was divided into two halves. The right half was used for training
and the left for testing, with an equal number of cores in each
cohort.

2.4 Classification Models and Hyperparameters
The SVM classifier was trained on 10,000 randomly selected pix-
els per class from the training dataset (Table 1). An equal number
of data points are drawn from each class to balance the training
data and optimize classifier performance. The RF classifier was
trained with 100 trees using 10,000 samples per class. Classifier
inputs consisted of five-element vectors containing the IR absorp-
tion values at each pixel and the corresponding pixel label.

The CNN model uses the same general structure as our previous

Amide II 

(1540 cm-1)

Carboxylic acid 

(1396 cm-1)
Collagen 

(1234 cm-1)
Glycogen 

(1162 cm-1)

Amide I 

(1664 cm-1)

(cm-1)

Fig. 4 The Figure shows the absorption spectrum of ovarian tissue
collected using O-PTIR. The spectrum shows the IR absorption values (Y-
axis) for the wavenumbers (X-axis) in the fingerprint region. The marked
peaks on the spectrum correspond to biochemically relevant functional
groups60 of glycogen at 1162 cm−1, amide III at 1234 cm−1, nucleic acids
and lipids at 1396 cm−1, amide II at 1540 cm−1, and amide I at 1661 cm−1.

Table 1 The total number of O-PTIR pixels in the training and testing
datasets separated by class is presented. The TMA is split in half to
create the training and testing cohorts. A small, random data subset
is chosen during the first training step, and the classifier is optimized.
Equal numbers of pixels are selected from each class to prevent class bias
in training. 10,000 O-PTIR pixels per class are used in the SVM and RF
classifiers and 400,000 pixels per class for CNNs.

Class Training Testing
Epithelium 22,766,257 19,249,625
Stroma 11,001,575 8,719,719

Total 33,767,832 27,969,344

breast classifier58. We optimized the network for O-PTIR data
classification using the following parameters. Inputs are cropped
into 32×32 regions around the center pixel to leverage the local
spatial information. The network consisted of: (1) a convolution
layer with 32-feature maps, (2) a 2× 2 max-pooling layer, (3) a
convolution layer with 32-feature maps, (4) a convolution layer
with 64-feature maps, (5) and finally a fully connected layer with
64 nodes and a softmax output for class probabilities. The O-PTIR
network contains an additional 32-feature convolution layer and
2× 2 max pooling layer before the 64-feature convolution layers
to adjust to the larger input size, ensuring that the feature size
in the final layers is equivalent in both models (Figure 5). The
same architecture is optimized for the FTIR data to make an apt
comparison of the classification results.

The following hyperparameters are used for our CNN models:

1. Optimization: The Adam optimizer was used.61

2. Dropout: The networks had a dropout layer before the fully
connected layer with a keep probability of 0.5. This layer
aids regularization and prevents overfitting by randomly dis-
abling nodes in the first and last layers in training. The
dropout layer was included before the softmax layer and be-
fore the first 64-feature convolution layer.
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Fig. 5 Schematic of the CNN architecture used for classification of
O-PTIR data. A spatial region of size 33× 33 is cropped around each
pixel. Data cubes of size 33×33××5 are fed into the first convolution
layer. Each input is convolved with filters of size 3× 3 outputting 32
feature maps. The following layer is a max pooling layer, which reduces
the spatial dimensions by half. Feature extraction continues with three
more convolution layers consisting of one 32 and two 64 feature maps
consecutively. The extracted features are then flattened and fed to a
fully connected layer with 128 units. The last layer, softmax, consisting
of 2 units (number of classes) outputs a vector of class probabilities. In
the end, the maximum probability is used to map each input pixel to its
corresponding class labels.

3. Non-linearity: A rectified linear unit (ReLU) activation
function is used for each layer.

4. Weight initialization: The initial weights of keras layers are
initialized using the randomnormal class from the built-in
initializer, which generates tensors with a normal distribu-
tion with mean at 0.0 and standard deviation of 0.05.

5. Batch Size: The networks are trained on batches of 128 im-
ages each of size 33×33×5.

6. Epochs: The networks were trained for 8 epochs, with data
randomly shuffled between epochs.

2.5 Implementation

All data pre-processing was performed using our open-source
SIproc, software62 implemented in C++ and CUDA. Training
and testing were performed in Python using open-source software
packages. The CNNs were implemented in Python with the Keras
library,63 built on TensorFlow.64 RF and SVM classifiers and ac-
curacy scores were computed using the Scikit-learn library.65 The
CNN classifier’s performance was calculated by testing the clas-
sifiers on ten different sets of randomly selected training pixels
and averaging the overall accuracy run on an NVIDIA Tesla K40m
GPU. The computation time for training the model with the afore-
mentioned parameters is 10 minutes and for classification on the
testing dataset is 30 minutes.

2.6 Cancer detection metrics

We define a pair of metrics that utilize tissue subtype classification
results to aid early ovarian cancer detection. The "stromal ratio"
(SR) is calculated by dividing the number of pixels classified as
stroma by the total number of pixels in each core. Similarly, the
"epithelial ratio" (ER) is the number of epithelial pixels divided by
the total number of pixels in the core.

3 Results
We evaluated classifier performance using the overall accuracy
(OA) and receiver operating characteristic (ROC) curves. OA
is beneficial for binary and multi-class classification, represent-
ing the percentage of pixels mapped correctly to the appropriate
class. The ROC curves delineate the correlation between speci-
ficity and sensitivity to ascertain acceptable false positive and true
positive indicators.

We performed tissue segmentation using multiple machine
learning algorithms, including those based on spectra alone, such
as RFs and SVMs, and those that utilize both spatial and spec-
tral features, such as CNNs. The class-wise and overall accuracy
obtained after the classification of the testing dataset are sum-
marized in Table 2. CNNs outperform RF and SVM classifiers in
both class-wise and overall accuracy (by 40-50%). The low OA
scores for RF (53.21%) and SVM (45.57%) can be attributed to
using spectral information from only 5 wavenumbers instead of
all the wavenumbers in the 900-1900 cm−1 range. Meanwhile,
the high overall accuracy achieved by CNN (94.61%) is due to the
utilization of both spectral and spatial features.

Table 2 Accuracy scores for epithelium and stroma classification using (a)
SVM, (b) RF, and (c) CNNs averaged across 80 repetitions are presented
below. CNNs utilize a combination of spatial and spectral features and
outperform SVMs and RFs that employ spectral features alone.

Class SVM RF CNN
Epithelium 80.31±0.18 60.18±0.29 95.33±1.52
Stroma 29.84±0.26 44.27±0.21 93.00±1.97

Total 45.57±0.3 53.21±0.05 94.61±0.82

CNN (FTIR – 5 Bands), AUC = 0.6
RF (FTIR – 5 Bands), AUC = 0.45
CNN (FTIR – 235 Bands), AUC = 0.9

CNN (O-PTIR – 5 Bands), AUC = 0.98
RF (O-PTIR – 5 Bands), AUC = 0.58

RF (FTIR – 235 Bands), AUC = 0.67

Fig. 6 ROC curves and associated AUC values for binary classification
of tissue type, separated by classifier type and datasets used. Due to
the use of two-class models, each tissue class curve is a reflection of the
curve from the other class, and thus the AUC values are equal across
tissue class. CNN classifiers exhibit superior results to the RF classifiers,
indicating that spatial information is essential in distinguishing tissue
types.

Results that characterize the performance of all classifiers using
the Area Under the Curve (AUC) in a Receiver Operating Charac-
teristic (ROC) plot are presented in Figure 6. Our CNN classi-
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fier on O-PTIR data from 5 bands outperforms all others with an
AUC of 0.98. An RF classifier on the same O-PTIR data shows
an AUC of 0.58. Since CNNs use spatial features and RFs don’t,
these results highlight the importance of combining spatial and
spectroscopic information for improved tissue classification. RF
classification on FTIR data with 5 bands provides a poor AUC of
0.45. This AUC increases to 0.67 by incorporating the 235 fin-
gerprint bands. Classification of FTIR data from 5 bands using a
CNN yields an AUC of 0.6, which increases to 0.9 when we in-
clude the 235 fingerprint bands. Comparing CNN performance
for FTIR with fingerprint spectrum (AUC=0.9) and O-PTIR with
5 bands (AUC=0.98) implies that spatial details obtained from
O-PTIR compensate for the loss in spectroscopic information due
to the reduction in the number of bands.

Figure 7 presents results when the RF and CNN classification
models are used to segment ovarian tissue cores, including re-
gions outside annotated areas. O-PTIR data is consistent with
H&E stained microscopy data, whereas RF results show poor con-
cordance. These results show that our CNN classification results
extend beyond annotated data indicating effective tissue segmen-
tation into epithelium and stroma.

Epithelium Stroma

(a) H&E (b) RF (c) CNN

200 μm

Fig. 7 (a) H&E images of tissue cores are compared to O-PTIR classifica-
tion results from (b) RFs and (c) CNNs. There is a good correspondence
between O-PTIR class images in (c) and the corresponding H&E images
in (a) indicating that our classification results generalize beyond anno-
tated tissue regions. The correspondence between RF and H&E is poor
as expected from the AUC values.

We can utilize classification results to facilitate early ovarian
cancer detection. Figure 8 presents plots of stromal ratio (SR) and
epithelial ratios (ER) as a function of Federation Internationale
de Gynecolgie et d’Obstetrique (FIGO) cancer stage. SR and ER
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Fig. 8 Stromal ratio (SR) and Epithelial ratio (ER) are plotted as a
function of the pathologist-assigned FIGO stage of ovarian cancer. These
ratios are calculated by dividing the number of pixels classified as stroma
or epithelium by the total number of pixels in each biopsy core. The
trend line in plots (a) and (c) show a nonlinear fit for SR and ER as
a function of the cancer stage. These trend lines display a substantial
reduction in SR and an increase in ER from normal to grade II, but
do not change appreciably from grades II to IV. There is a statistically
significant (P < 0.01) decrease in SR and a significant (P < 0.01) increase
in ER during the early stage of cancer from normal tissue until stage II
as presented in (b) and (d). The graphs show the mean SR and ER vs.
early cancer grade. The error bands correspond to one standard deviation
(SD).

showed a nonlinear relationship with the FIGO stage, and the
curve fitting function was calculated using nonlinear least-squares
on the ratios. We observe a sharp reduction in SR with increas-
ing cancer grade until grade II and a subsequent flattening of the
curve. Figure 8(b) emphasizes the SR trend in early cancer stages:
normal, grade I, IA, IB, IC, and II. There is a statistically significant
(P < 0.01) reduction in SR from normal to grade I, illustrating its
effectiveness as an early detection biomarker. A complimentary
trend is observed in the ER metric in (c). A statistically significant
(P < 0.01) increase in ER is observed with progressively wors-
ening early stage cancer in (d). Pathologists have qualitatively
observed changes in the relative quantities of stroma and epithe-
lium in early cancer stages. Our technique quantifies the number
of epithelial and stromal pixels, thereby enabling measurement
of quantitative trends in the aforementioned metrics in the early
stages of ovarian cancer which is consistent with the earlier stud-
ies made on tumor-stroma ratio in ovarian cancer.8

4 Discussion
FTIR imaging measures tissue absorbance across all mid-IR
wavenumbers and constructs a hyperspectral data cube. The tech-
nology does not allow the measurement of individual wavenum-
bers. O-PTIR uses a tunable QCL to measure tissue absorbance at
discrete wavenumbers. We can measure only a subset of mid-IR
wavenumbers relevant to a specific application, thereby reducing
data collection time. On the other hand, O-PTIR uses a pump-
probe architecture to obtain super-resolution images. This im-
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proved resolution results in an increase in the quantity of data and
a corresponding increase in data collection time for each image.
The effect of the improvement in resolution on tissue classifica-
tion and the tradeoff between spatial and spectral resolution have
not been studied until this paper. Our results demonstrate that we
can maintain excellent tissue classification accuracy by reducing
the number of bands and increasing the spatial resolution. This
work presents a framework for making spatial-spectral tradeoffs
in spectroscopic imaging while retaining good tissue segmenta-
tion accuracy.

Deep learning is used routinely in image classification.66 How-
ever, it’s application to hyperspectral data is limited.58 Further-
more, it has never been applied to super-resolution hyperspectral
data, and our paper is the first to demonstrate efficacy. Hyper-
spectral data being three-dimensional (3D) requires a large mem-
ory bandwidth. Super-resolution images have finer spatial details
and require larger convolutional kernels to identify the same area
as FTIR, increasing computational costs and making classification
more challenging. We have optimized our novel deep-learning
architecture to achieve an excellent tissue segmentation AUC of
0.98 despite these challenges.

Our results are obtained on 78 independent cancer patient
cores and are statistically robust. Prior work often utilizes pixels
within the same set of tissue cores during classification.67,68 This
can lead to misleading results since the machine learning algo-
rithm may learn features that correspond to specific patient traits
that are challenging to generalize beyond the current dataset.
We perform training and validation on mutually exclusive patient
cores, achieving robust, generalizable results that enhance scien-
tific rigor and reproducibility.

Results in Figure 6 show a significant improvement in efficacy
between RF (AUC=0.58) and CNNs (AUC=0.98) on the same O-
PTIR data. Since CNNs not only utilize spectroscopic information,
but also extracts spatial data, these results highlight the advan-
tages of combining spatial and spectral features. This work builds
on prior spatial-spectral FTIR classification work51 and affirms
the validity of this research approach.

The increased spatial resolution of O-PTIR leads to larger
within-class spectral variation. Spectra in FTIR imaging are av-
eraged over ≈ 5µm pixel, which is approximately the size of one
cell. On the other hand, spectra in O-PTIR correspond to more
localized (0.5µm) sub-cellular features such as cell nucleus or
Golgi apparatus, which have disparate biochemical constituents.
This leads to a larger spectra variation in O-PTIR even within the
same tissue class. A large within-class variance can be a poten-
tial disadvantage in tissue segmentation and analysis. However,
our data analysis approach that combines spatial-spectral features
turns this variation into an advantage.

The performance of machine learning algorithms depends crit-
ically on the quality and quantity of annotated data. Since anno-
tations are performed using images of stained adjacent-sections
that are several microns away from the MIRSI section, this im-
poses limitations on labeling accuracy. We mitigate annotation
errors by limiting our labeling to unambiguous tissue areas and
avoiding class boundaries. Furthermore, the alignment of images
from adjacent sections is challenging,69 and we obtained the best

fit through manual adjustment. The five wavenumbers that we
chose for O-PTIR imaging offer good classification performance,
but optimizing the set of wavenumbers could lead to improved
performance. We will explore this optimization and the effects of
improved spatial resolution on identifying other tissue subtypes
in future work involving multi-class segmentation.

To our knowledge, this is the first large scale analysis of ovar-
ian cancer tissue using mid-IR spectroscopic imaging. This anal-
ysis affords quantitative insights into ovarian cancer. Pathologists
utilize the extent of epithelial infiltration into stroma and the rela-
tive proportion of stroma or epithelium to the rest of the tissue to
subjectively assess cancer grade. Since our approach can precisely
quantify the number of pixels of these subtypes, we can quantify
these assessments and observe trends in a reliable manner. Fur-
thermore, we analyze 78 cancer patients, enabling statistically
robust analysis. Figure 8 (a) and (b) show that there is a statis-
tically significant (P < 0.01) reduction in the stromal ratio (SR)
between normal tissue (SR ≈ 0.9) and early stage (grade I - SR
< 0.4) ovarian cancer. SR Furthermore, SR reduces from grade I
to II and then shows no appreciable change from grade II to IV.
The grades are obtained directly from Biomax. A complimentary
trend is observed in the epithelium ratio (ER) in (c) and (d). ER
for normal tissue is ≈ 0.1 and that for grade I cancer is > 0.6.
These results illustrate the utility of quantitative tissue classifica-
tion in cancer diagnosis. SR and ER are quantitative biomarkers
for early stage ovarian cancer diagnosis and will be explored in
greater detail in future work.

5 Conclusion
MIRSI is an emerging technology that has the ability to revolu-
tionize digital histopathology. Significant progress has been made
in overcoming the technological challenges impeding its clinical
adoption. O-PTIR solves the spatial resolution challenge of prior
FTIR imaging technology, enabling label-free sub-cellular tissue
investigation. In this work, we present the first label-free, auto-
mated histological classification of ovarian tissue subtypes using
MIRSI. We show that the improved spatial resolution allows us
to make fewer spectral band measurements and still achieve reli-
able tissue segmentation with an AUC of 0.98. These results are
enabled using a novel deep-learning architecture optimized for
MIRSI data. The results are statistically robust with validation
over 78 cancer patients and 60 million data points. We utilize
tissue classification and propose new quantitative biomarkers for
early ovarian cancer diagnosis. The combination of deep learn-
ing and quantitative biochemical measurements using MIRSI en-
ables numerically precise evaluation of previously subjective as-
sessments, improving the rigor and reproducibility of histopathol-
ogy. O-PTIR also performs measurements in back-reflection ge-
ometry, making the instrument easy to use on diverse tissue sam-
ples and facilitates future clinical translation.
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