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X-ray absorption and related spectroscopies have proven to be
an important experimental technique for probing atomic, elec-
tronic, vibrational, and magnetic structure in a wide variety of
materials and applications. Among these are energy materials,1

chemical, geological and biological systems,2 surface science and
magnetism.3 In addition, the advent of femto-second and free-
electron lasers has added the capability to probe time and tem-
perature at extreme scales.4,5 For example, chemical reactions
can be probed in real-time,4 and high intensity pumps can used
to create short lived warm-dense states of matter.6

In order to interpret the results of these experiments, advanced
theories and computational approaches are essential. There have
been tremendous advances in the theory and calculation of x-ray
spectra, both from formal developments, as well as computational
algorithms that take advantage of the ever-increasing computa-
tional power. Most of these approaches can be classified as ei-
ther ab initio or model Hamiltonian based. Currently there are
a wide variety of ab initio approaches, such as density functional
theory (DFT),7–9 time-dependent density functional theory,10–12

many-body perturbation theory as in the solution of the Bethe-
Salpeter equation (BSE) with or without the GW approxima-
tion,13–15 and quantum chemistry methods such as configuration
interaction (CI) and restricted-active space self-consistent field
(RASSCF).16–18 Of the model Hamiltonian based approaches, the
most widely used are atomic multiplet and charge transfer mul-
tiplet models,19 for which advanced methods exist for ab initio

calculations of the parameters involved,20,21 and solutions based
on dynamical mean field theory (DMFT) are also available.22,23
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In this article, we review a number of recent advances in the
theory and calculations of x-ray spectra, with a focus on Green’s
function techniques and especially the real-space multiple scat-
tering approach (RSMS) used in the FEFF codes.24–26 This re-
view covers a variety of recent advances implemented in the
FEFF codes, including quasiparticle self-energy effects,27 ab ini-

tio treatments of vibrational disorder through Debye-Waller fac-
tors,28 and the description of systems at finite-temperature and
out of equilibrium.29 In particular, we discuss the application
of the cumulant expansion for the one-electron Green’s func-
tion,30–33 which has been shown to yield accurate many-body
satellite structure in x-ray spectra.33–37 Finally, we describe the
python based workflow framework dubbed Corvus, which facili-
tates advanced calculations that require multiple auxiliary scien-
tific software packages.

In the remainder of this article Section 2 contains a brief
overview of the basic theory of x-ray spectra, focusing on x-ray
absorption spectra (XAS); Section 3 discusses the real-space mul-
tiple scattering (RSMS) theory of XAS; Section 4, advances in
treating many-body satellites within the cumulant approach; and
Section 5 the workflow framework Corvus and some applications.
Finally, Section 6 contains a summary and concluding remarks.
Throughout this article, we use atomic units h̄ = e = m = 1,c =

1/α = 137.037, unless explicitly stated.

✷ ❳✲r❛② ❆❜s♦r♣t✐♦♥ ❛♥❞ ❘❡❧❛t❡❞ ❙♣❡❝tr♦s❝♦♣✐❡s

Experimentally, XAS measures the probability that photons of a
particular energy ω are absorbed by a sample. As the energy
is increased, jumps called "edges" are observed in the absorp-
tion spectrum, roughly at the binding energy of core-electrons
in the system. These are related to the fact that these core elec-
trons are not allowed to participate in the absorption process until

✶✕✶✸ ⑤ ✶
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the photons have enough energy (roughly the binding energy) to
promote them to unoccupied states of the system. These edges
have a nomenclature denoting the quantum state of the associ-
ated core-level, i.e., K = 1s, L1 = 2s, L2,L3 = 2p1/2,2p3/2, etc.
Above each edge, there exist oscillations called fine structure, due
to quantum interference between the outgoing photoelectron the
backscattering from neighboring atoms. Due to different consid-
erations in calculation and analysis, the absorption near the edge
up to about 50 eV above the edge is termed x-ray absorption near

edge structure (XANES), while above that, the term extended x-

ray absorption fine structure (EXAFS) is used. In this section we
briefly review the basic theory of XAS and discuss the connec-
tion to theories of related spectroscopies, such as x-ray emission
spectroscopy (XES), electron energy loss spectroscopy (EELS) and
non-resonant inelastic x-ray scattering (NRIXS).

2.1 XAS, EELS, NRIXS

The basic theory of x-ray absorption is usually expressed in terms
of a Fermi’s golden rule,38

µabs(ω) ∝ ∑
F

|〈I|D|F〉|2 δ (ω +EI −EF ). (1)

Here |I〉, EI is the many-body ground state wavefunction and en-
ergy, |F〉, EF is an excited state wavefunction and its associated
energy, and D is the many-body transition operator, which char-
acterizes the interaction of the many-body electronic system with
the probe (usually x-rays or electrons). The energy of the x-ray
or that lost by the probe is given by ω, and the delta function
enforces energy conservation. While this expression is formally
exact within 2nd order perturbation theory for weak probes, and
useful for the purpose of discussion, the many-body nature of
molecular or solid state systems where the number of electrons
varies from of order 102 to 1023, make calculations based on the
golden rule impossible. Thus one must reduce the problem to
a smaller number of degrees of freedom. One way to do this
is to approximate the spectrum using an effective one-electron
Hamiltonian, such as the Kohn-Sham Hamiltonian of DFT, or a
quasi-particle approach where the many-body effects are included
in terms of an exchange-correlation potential or a dynamic self-
energy. Then the many-body spectrum µabs(ω) can be written in
terms of a convolution of a quasiparticle spectrum and a many-
body spectral function A(ω,ω ′),27,34,39

µabs(ω) =
∫

dω ′A(ω,ω ′ )µabs
qp (ω −ω ′) (2)

µabs
qp (ω) ∝ ∑

i, f

|〈i|d| f 〉|2 δ (ω + εi − ε f ), (3)

Here the one-particle states |i〉, | f 〉 are quasiparticle occupied and
unoccupied states, respectively, with εi,ε f their quasiparticle en-
ergies. For the case of core-level spectroscopy, we are interested
in transitions from a particular deep core-level |c〉, so that the
contribution from that core level to the quasiparticle spectrum
reduces to

µabs
qp (ω) ∝ ∑

f

|〈c|dP| f 〉|2 δ (ω + εc − ε f ). (4)

In this case the final states | f 〉 are calculated in the presence of
a screened core-hole potential, i.e., within the final state rule,
while P is a projection operator onto the unoccupied levels of the
ground state, which enforces orthogonality and accounts for the
Mahan edge-singularity effects.40,41 For simplicity we set P = 1 in
the following and only include states f above the Fermi level εF .
The transition operator depends on the type of spectroscopy, i.e.,

d = ε̂ · r; XAS/XES,

d = q · r; EELS,

d = eiq·r; NRIXS, (5)

where ε̂ is the polarization of the x-rays, and q is the momen-
tum transferred to the system by the probe. For XAS, XES, and
EELS, the transitions are, to a good approximation, dipole lim-
ited, and thus the dipole approximation is used as shown above
for these spectroscopies. However, for NRIXS, the transition op-
erator is given by the exponential form shown, and is only dipole
limited at very small momentum transfer. The transition operator,
along with the symmetry of the core-state, determines the local
symmetries of the final states that can be probed, with the orbital
angular momentum of the possible final states determined within
the dipole and quadrupole approximations as follows,

∆l = ±1; dipole

∆l = 0,±2; quadrupole. (6)

Thus XAS and EELS probe unoccupied states of angular momen-
tum l = lc ± 1, while NRIXS can access higher multipole excita-
tions by probing larger momentum transfer.

While the Fermi golden rule approach to spectra is useful for
discussions and has been implemented in a variety of codes it is
usually computationally difficult to obtain reasonable spectra at
high energy (e.g., tens to hundreds of eV) relative to the x-ray
edge. The reason is that with such sum-over-states approaches
one must first calculate all of the unoccupied eigenstates and their
eigenenergies, both for excitations to bound states, as well as the
continuum. Here we take a different approach, and formulate the
problem in terms of the effective one-electron Green’s function,
G(E),

µabs
qp (ω) ∝

{

Im
[

〈c|d†G(ω + εc)d|c〉
]

θ(ω + εc − εF )
}

, (7)

where εF is the Fermi energy, and the function θ(ω + εc) is the
unit step function ensuring that transitions are from the occupied
core-level to unoccupied states of the system. The one-electron
Green’s function is given by

G(E) =
1

E −h−Σ(E)
, (8)

where h is the single particle Hamiltonian, which includes the
kinetic energy term, the potential from the nuclei, and the mean-
field Hartree approximation to the interaction. Σ(E) is the quasi-
particle self-energy operator, which takes dynamic exchange and
correlation into account. In this formulation the sum over unoc-

✷ ⑤ ✶✕✶✸
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cupied states | f 〉 is implicit in the definition of Green’s function, as
can be seen by expanding G(E) in the eigenstates of the system,
and thus there is no need to solve for these eigenstates explic-
itly. Instead, the Green’s function is found directly by solving an
energy dependent differential equation, for which the solution is
written in terms of the real-space multiple scattering basis.

✸ ❘❡❛❧✲s♣❛❝❡ ▼✉❧t✐♣❧❡✲❙❝❛tt❡r✐♥❣ ●r❡❡♥✬s ❢✉♥❝t✐♦♥

t❤❡♦r② ♦❢ ❳❆❙

This approach is also referred to as Real-space Green’s function
(RSGF) theory. Within multiple scattering theory, the potential
V (r) due to the atomic nuclei and the mean-field Kohn-Sham po-
tential are expressed as a sum of single-site muffin-tin (MT) po-
tentials, centered about one of the atoms in the system, and zero
outside a sphere of radius RMT, and a constant interstitial poten-

tial Vinter between the sites,

V (r)≈Vinter +∑
i

vi(|r−Ri|), (9)

vi(|r−Ri|) =[Vi(|r−Ri|)−Vinter]θ(|r−Ri|−RMT). (10)

Here Vi(|r−Ri|) is the total DFT potential, spherically averaged
about the ith site center. The choice of interstitial potential and
muffin-tin radii is not unique, and can be set by the use within the
FEFF codes. By default, the muffin-tins are overlapping, which
has been found to correct for some of the errors due to the ne-
glect of non-spherical potentials. Details of the prescription for
finding the default muffin-tin radii and interstitial potential can
be found elsewhere.24 Since the core-level is localized at the cen-
tral (absorbing) site, we are interested only in the portion of the
Green’s function with both spatial arguments within the central
cell i corresponding to the absorbing atom,

G(r,r′,E) = ∑
L

RL(r<)HL(r>)+ ∑
L,L′

RL(r)G
sc
iL,iL′(E)RL′(r′). (11)

Here the scattering states are defined as RL(r) = ilRl(r)YL(r̂) fol-
lowing the conventions in Rehr and Albers 24 where Rl and Hl are
the regular and irregular solutions of the single site radial Dirac
equation for site i, and YL(r̂) are the spherical harmonic func-
tions where L denotes the combined orbital angular momentum
l and magnetic m quantum numbers (or their relativistic counter-
parts). In general, the Green’s function can be written in terms
of an expansion in orders of the single site scattering potentials
vi about the free Green’s function G0(r,r′,E). However, it is more
convenient to sum all consecutive scatterings from a given site
by defining the single site scattering matrices ti = vi + viG

0ti. The
scattering Green’s function in the above equation is then given by,

Gsc = G0 +G0T G0 +G0T G0T G0 + · · ·

= [1−G0T ]−1G0, (12)

where the free Green’s function G0 and the scattering matrix T

are now matrices in a site and angular momentum basis {i,L}. In
the above, the scattering matrix is site and angular momentum
diagonal, i.e., TiL jL′ = tiδi j = eiηil sin(ηil)δi jδLL′ , where ηil is the

phase shift of the ith site potential, and δi j is the Kronecker delta,
which is one if i = j and zero otherwise. With this representation
of the Green’s function, the quasiparticle spectrum is given by,

µabs
qp (ω) =

Im

[

−i∑
L

|ML|
2 + ∑

L,L′

M∗
LGsc

0L0L′(E)ML′

]

θ(ω + εc − εF )

ML = 〈RL|d|c〉. (13)

At energies high above an x-ray absorption edge, the scattering
Green’s function can be approximated via a multiple-scattering
path expansion, as in the series expansion of Eq. 12, with the aid
of the Rehr-Albers separable approximation.42 In addition, the
path-expansion yields an EXAFS equation similar in form to that
of Sayers et al. 43 but now builds in curved wave corrections to
the effective scattering amplitudes feff(k), from which the FEFF
codes are named. The path expansion in the FEFF codes con-
verges rapidly, typically with 10-100 paths, and has been used ex-
tensively to provide theoretical standards for EXAFS analysis.44,45

At low energies, near an absorption edge where inelastic mean-
free paths are long, multiple scattering can be substantial leading
to poor convergence of the path-expansion. In that case, the full
multiple-scattering (FMS) approach is necessary, which can be
calculated using the matrix inverse in Eq. 12.

In many cases, the spectral function in Eq. 2, can be approx-
imated by a Lorentzian with width Γc, corresponding to the in-
verse core-hole lifetime. For efficiency, and to avoid numerical
instability associated with calculations of the Green’s function on
the real energy axis, we perform the convolution on a contour in
the complex energy plane, starting from εF , proceeding up the
imaginary axis to εF + iΓc, then to ∞+ iΓc.

In addition to the spectrum, we must be able to calculate the
relaxed ground state electron density self-consistently, since the
electron density is required for the mean-field muffin-tin poten-
tials. Within the Green’s function approach, the density is given
by,

ρ(r) = −
2

π
Im

∫ εF

−∞
dE G(r,r,E). (14)

In addition, one must find the Fermi energy, which is determined
by enforcing charge neutrality,

Ne =
∫

d3r ρ(r;εF ), (15)

where Ne is the number of electrons in the system. In practice,
relaxation of the core-electrons is neglected, so that the lower
bound of the integral in Eq. 14 is given by the core-valence sepa-
ration energy Ecv ≈ EFermi −40eV .

With these definitions, one can calculate a variety of spectra
beyond XAS, including XES, EELS,46 and NRIXS47, but also oth-
ers such as Compton,48 and resonant inelastic x-ray scattering
(RIXS)49. See Rehr and Albers 24 for additional details.

✶✕✶✸ ⑤ ✸
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3.1 Many-pole model self-energy

Due to the relaxation of the valence electrons when a particle-hole
excitation occurs, peaks in the experimental spectrum are shifted
and broadened (due to finite lifetime) relative to those of the sin-
gle particle theory. The energy dependent shift and Lorentzian
width are related to the quasiparticle self-energy, which is usually
calculated within the GW approximation50 as Σ(E)≈ iGW , where
G is the one-electron Green’s function, W = ε−1(ω)v is the dy-
namically screened Coulomb interaction, and ε(ω) is the dielec-
tric function of the material. It is now standard in calculations of
XAS to approximate this self-energy by using a plasmon pole ap-
proximation for the dielectric function ε(q,ω).51 In this case the
loss function −Im[ε−1(q,ω)] is given by a single delta function,
which allows for an analytic calculation of the quasiparticle life-
time. While this approximation works surprisingly well for high
photoelectron energy, it can break down near the edge. In order
to improve the approximation while retaining the efficiency of a
pole model, one can use a many-pole approximation to the loss
function,27

L(q,ω) =−Im
[

ε−1(q,ω)
]

= ∑
i

giδ (ω −ωi(q)), (16)

where the strengths gi, and energies ωi(0) are constrained by
matching the model to moments of a calculation of the zero mo-
mentum transfer loss function, as seen in Fig. 1. The dispersion
of these poles is assumed to be that of the electron gas. The
zero momentum-transfer loss function can be calculated using
a variety of methods, including an efficient real-space multiple
scattering approach, which sums Eq. (13) over all edges in the
system,52,53 or more accurate approaches such as those based
on the Bethe-Salpeter equation.13 In addition, it has been shown
that an embedded atomic approximation to the zero frequency
loss function can be used with very little loss of accuracy for the
quasiparticle self-energy, as shown in Fig. 2. The many-pole self-
energy yields improved agreement with experiment for near-edge

❋✐❣✳ ✷ ❘❡❛❧ ❛♥❞ ✐♠❛❣✐♥❛r② ♣❛rts ♦❢ t❤❡ q✉❛s✐♣❛rt✐❝❧❡ s❤✐❢t ❝❛❧❝✉❧❛t❡❞ ✇✐t❤
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XAS and EELS spectra compared to ground state calculations, as
shown in Fig. 3 which shows calculated and experimental results
of the O K-edge of SnO2. In addition, quantitative improvement is
observed in the analysis of extended x-ray absorption fine struc-
ture (EXAFS).54

3.2 Ab initio Debye-Waller Factors

In addition to the broadening of the spectrum due to interaction
of the photoelectron with the valence electrons, there is broad-
ening and damping due to vibrational disorder, which is highly
temperature dependent. In particular Eq. (13) gives the absorp-
tion for a fixed set nuclear coordinates, ignoring the effects of
vibrational disorder, which tends to damp the fine-structure at
high energies. In this section we show how the Green’s function
approach can also be used to address these vibrational damping
effects using ab initio force constants. The effect on the spectrum
can be characterized by path-dependent EXAFS Debye-Waller fac-
tors exp(−2k2σ2

R(T ), where k is the EXAFS wave number, and
σ2

R(T ) =
〈

[(uR −u0) · R̂]2
〉

is the mean-square relative displace-
ment (MSRD).55 These factors damp the spectrum at high energy,
with the effect increasing with temperature, with σ2

R ≈ kBT/κ

where κ is an effective spring constant. The need for path de-
pendent Debye-Waller factors creates a major difficulty for the
analysis of EXAFS due to the large number of free parameters in-
volved, especially for disordered or molecular systems, where a
simple model such as the correlated Debye model is inapplicable.
In such cases it is advantageous to obtain the Debye-Waller factors
through ab initio approaches. A number of theoretical methods
have been used to this end, based, e.g., on DFT,56–58 or molecu-
lar dynamics.59 Here we provide details of the approach of Vila
et al. 56 which is implemented within the FEFF10 code.

The temperature dependence of the MSRD is given by the De-
bye integral

σR(t)
2 =

1

2µ red
R

∫ ∞

0
dω coth(βω/2)ρR(ω), (17)

where β = 1/kBT , µ red
R is the reduced mass associated with the

path R, and ρR(ω) is the path-projected vibrational density of
states (VDOS). Thus the difficulty in calculating the MSRD lies in
calculations of the projected VDOS. Simple correlated Debye or
Einstein models of the VDOS can be used in some cases, although
their application is limited to systems with high symmetry.57,60

Alternatively, the VDOS can be related to the lattice dynamical
Green’s function,

ρR(ω) =
2ω

π
Im

〈

R

∣

∣

∣

∣

1

ω2 −D+ iδ

∣

∣

∣

∣

R

〉

, (18)

where D is the lattice dynamical matrix given by second deriva-
tives of the internal energy of the system with respect to atomic
displacements, and |R〉 is a unit vector projecting onto the path
in question. The dynamical matrix can be obtained through
standard approaches within DFT, after which the matrix inverse
is performed via an efficient Lanczos algorithm.61 Beyond effi-
ciency, the Lanczos algorithm is also useful since it can stabi-
lize the calculation, and provides a simple many-pole model of
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the VDOS. In particular, the first iteration gives a single pole
model, similar to the correlated Einstein model, where the pole
matches the first moment of the VDOS. High accuracy can be
achieved efficiently with ∼ 6 iterations.56 Fig. 4 shows the re-
sulting pole model for the total VDOS of Cu compared to experi-
mental results.56 This approach has been used to predict EXAFS
Debye-Waller factors for simple metals, semiconductors, and even
more complex systems with negative thermal expansion such as
zirconium-tungstate ZrW2O8, as shown in Fig. 5

In addition to the EXAFS MSRD, other quantities related to
vibrational disorder can be obtained. For example, the mean-
squared displacements u2(T ) associated with diffraction exper-
iments can be calculated via an integral similar to that of Eq.
17. Other EXAFS cumulants have a simple relationship to the
MSRD, which allows calculations of the Debye-Waller factors be-
yond the harmonic approximation. Thermal expansion coeffi-
cients can also be found via minimization of the Helmholtz free
energy, or through calculation of the Grüneisen parameters.56

3.3 Time-resolved and Finite-Temperature XAS

Recent interest and advances in the time resolution of pump-
probe experiments has led to x-ray absorption probes of systems
out of equilibrium and at very high electronic temperatures, up to
the warm-dense-matter regime.6,62–65 In order to simulate XAS
at finite temperatures, both the temperature dependence of the
lattice and that of the electronic system must be treated. While
the previous section discussed an approach for treating the lattice
temperature, here we provide details about our RSMS treatment
of finite electronic temperature in x-ray spectra. Other finite tem-
perature multiple-scattering theories have been developed pre-
viously.66,67 More recent developments have shown that pre-
dictions of high temperature spectra are possible with multiple-
scattering approaches.68,69 Three extensions of the theory must

✶✕✶✸ ⑤ ✺
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be implemented in order to treat finite electronic temperatures.29

First, Fermi-Dirac statistics must be taken into account both in the
formula for the quasiparticle XAS, and in the definition of the self-
consistent density. Second, the self-consistent density should be
calculated using a finite-temperature exchange-correlation poten-
tial.70 Third, the quasiparticle self-energy used in the calculation
of the spectrum should be calculated at finite temperature. The
first of these three effects is the most important well below the
Fermi temperature kTF = εF , and this is our focus below. How-
ever, at higher temperature, i.e., the warm-dense matter regime
where T is of order TF the temperature dependence of the ex-
change correlation potential and self-energy can become impor-
tant. This effect can be calculated within FEFF using the finite
temperature exchange correlation potential of Karasiev et al. 70

Temperature dependent self-energies have also been developed
using the finite temperature GW approximation,71 or the finite
temperature generalization of the static Coulomb-hole screened-
exchange (COHSEX) approximation.72

The form of the quasiparticle XAS at finite temperature is sim-
ilar to that of zero temperature XAS, i.e., from Eq. 13, except
that the unit step function ensuring contributions only from exci-
tations to the unoccupied states is replaced by a Fermi function,
thereby taking Fermi-Dirac statistics into account.

µabs
qp (ω) = Im

[

∑
L

|ML|
2 + ∑

L,L′

M∗
LG0L,0L′(ω + εc)ML′

]

×

f (εc) [1− f (ω + εc)] , (19)

f (E) =
1

exp [(E −µ)/kT ]+1]
. (20)

In order to account for the finite lifetime of the hole, the quasi-
particle spectrum is convolved with a Lorentzian as in the zero
temperature case. Again, for efficiency, the integral is performed
in the complex plane, although at finite temperature, the contour
is taken from Ecv to Ecv + iγ, then to ∞+ iγ, where the size of the
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imaginary part γ is chosen to ensure that the Green’s function is
sufficiently smooth γ ≈ 4 eV. In addition, γ is set halfway between
two Matsubara poles, as seen in Fig. 6. Thus the Green’s function
must also be calculated at any Matsubara poles enclosed by the
contour and the residues must be subtracted from the result of
the contour integral.

The integral defining the density is modified in a similar man-
ner, replacing the upper bound restricting the integral to occupied
states in Eq. 14 with a Fermi function,

ρ(r) =−
2

π
Im

∫ ∞

−∞
G(r,r,E) f (E; µ(T )). (21)

Again, this integral is calculated on a contour going from Ecv to
Ecv+ iγ and up the real axis to ∞+ iγ, and subtracting the residues
at the Matsubara poles, i.e.,

ρ(r) = Im

[

−
∫

C
dE

2

π
G(r,r′,E) f (E)−4ikBT

n

∑
j=1

G(r,r′;z j)

]

,

z j = µ ± i(2 j−1)kBT. (22)

In addition, temperature dependence of the chemical potential
µ(T ) is defined implicitly by enforcing charge neutrality,

Ne =
∫

d3r ρ(r; µ(T )). (23)

The inclusion of Fermi-Dirac statistics in the definition of the spec-
trum and density modify the calculated XAS in several ways. At
finite temperature, the Fermi function broadens to a width ∼ kBT .
This causes the chemical potential, and thus the x-ray edge, to

✻ ⑤ ✶✕✶✸
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shift at finite temperatures. At low temperature, this shift is pro-
portional to the logarithmic derivative of the density of states at
the Fermi energy D(εF ), in accordance with a Sommerfeld expan-
sion µ(T )− µ(0) = (π2/6)(kBT )2D′(εF )/D(εF ). This approxima-
tion is often valid to modertate temperatures T < TF . Another
effect of the broadening of the Fermi function is the excitation of
states below the chemical potential is allowed. This effect, known
as continuum lowering can be especially prominent in L-edges of
the late 3d transition metals, where the high intensity density of
d-states lies right below the Fermi energy. This effect is shown
for Cu in Fig. 7, which shows the L-edge XAS of Cu calculated at
various electronic temperatures.

For systems out of equilibrium, the lattice and electronic tem-
peratures generally have different values, and the coupling be-
tween the lattice and the electrons can be approximated using
a two-temperature model. Generally, the effect of lattice vibra-
tions is to damp the spectrum, with increased damping at higher
energy, as well as higher temperatures. These effects can be cal-
culated as detailed in the previous section for energies well above
the edge. Near the edge, symmetry breaking can cause forbidden
transitions to appear in the spectrum, which cannot be predicted
by the use of Debye-Waller factors. An alternative approach is to
use either molecular dynamics, which is applicable at high tem-
peratures in the classical limit, or to populate the phonon modes
using Monte-Carlo approaches. The XAS is then averaged over
many configurations of the atomic positions.
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Many-body electronic effects in x-ray spectra are also apparent in
some other ways, beyond the energy dependent shift and broad-
ening associated with quasiparticles. In particular, the sudden
appearance of the core-hole and photoelectron can cause addi-
tional electronic excitations such as plasmon, particle-hole, and
charge transfer excitations. These inelastic losses show up as ex-
tra satellite peaks in x-ray spectra, shifted from the main quasi-
particle peak by the energy of the many-body excitation. Such
satellites show up in all spectra to varying extents, but are es-
pecially prominent in x-ray photoemission spectra (XPS), which
are directly related to the one-electron spectral function. Effec-
tive single particle (or quasiparticle) theories predict only a single
peak for each core-level, while multiple peak are present in ex-
periment. Formally, these many-body excitations can be treated
via an energy dependent self-energy as seen in Eq. 8. However,
standard approaches for calculating the self-energy, e.g., based
on many-body perturbation theory, such as the GW approxima-
tion of Hedin 73 fail to describe the many-body satellites.74 In
particular, the GW approximation fails to describe the multiple
plasmon satellites observed in the XPS of nearly free-electron met-
als,30,31,35,74 and even semiconductors,36 producing only a sin-
gle satellite at an energy ∼ 1.5 times that of the first satellite seen
in experiment. In contrast, the cumulant expansion correctly de-
scribes these multiple plasmon satellites at the correct energy cor-
responding to the plasmon energy in the loss function, as shown
in Fig. 8.31,33,35–37,75 The cumulant Green’s function is given by
an exponential in real-time,

gc(t) = g0
c(t)e

C(t); g0
c(t) =−θ(−t)e−iεct . (24)

✶✕✶✸ ⑤ ✼
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where g0
c = −ie−iεctθ(−t) is the single-particle core-level Green’s

function, and C(t) is the cumulant, which builds in dynamic cor-
relation. For core-levels, the XPS spectrum is approximately given
by the spectral function which is the Fourier transform of the core-
electron Green’s function, Ac(ω) = −(1/π) ImFT [gc(t)]. To facili-
tate the analysis, it is useful to express the cumulant in Landau
form,

C(t) =
∫

dω
β (ω)

ω2

[

e−iωt + iωt −1
]

, (25)

where β (ω) describes a quasi-boson excitation spectrum. The first
term in the above expression yields the satellites, while the sec-
ond and third terms are associated with the complex quasiparticle
shift ∆qp and renormalization factor Zqp, i.e.,

∆qp =
∫

dω
β (ω)

ω
,

Zqp = e−α

α =
∫

dω
β (ω)

ω2
. (26)

The behavior of the excitation spectrum β (ω) was first derived by
Langreth 30 for an electron gas, but is more generally valid within
the linear response approximation. Formally β (ω) is related to
the dynamic structure factor,

β (ω) = ∑
q

|Vq|
2S(q,ω), (27)

where Vq is the core-hole potential.

4.1 Real-Time Cumulant

The above expression for the cumulant can be generalized to real-
space and real-time, and is related to the time dependent density
fluctuations caused by a core-hole potential turned on at time
t = 0,76

β (ω)

ω
=

1

π

∫

dt∆(t)e−iωt

∆(t) =
∫

d3r δρ(r, t)Vc(r). (28)

To make connection with the Langreth form in Eq. 27, note that
the induced density can be expressed in terms of the response
function χ and the external potential, which in this case is the
core-hole potential,

δρ(r, t) =
∫

dt ′
∫

d3r′ χ(r,r′, t − t ′)vc(r
′)θ(t ′),

∆(t) =
1

π

∫

dt ′
∫

d3rd3r′ vc(r)χ(r,r
′, t − t ′)vc(r

′)θ(t ′), (29)

which is just the space and time Fourier transform of Eq. 27. This
form has been implemented within the real-time TDDFT version
of the SIESTA code,77 and has been used to describe charge tran-
fer excitations in transition metal oxides, as shown in Fig. 9. The
real-space, real-time approach described above yields an analysis
of the excited states through the induced density fluctuations. In
particular, the Fourier transform to frequency gives a real-space
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♣❡r♠✐ss✐♦♥ ❢r♦♠ ❬❏✳ ❏✳ ❑❛s✱ ❋✳ ❉✳ ❱✐❧❛✱ ❏✳ ❏✳ ❘❡❤r ❛♥❞ ❙✳ ❆✳ ❈❤❛♠❜❡rs✱

P❤②s✳ ❘❡✈✳ ❇✱ ✾✶✱ ✶✷✶✶✶✷ ✭✷✵✶✺✮❪✱ ❈♦♣②r✐❣❤t ✭✷✵✷✷✮ ❜② t❤❡ ❆♠❡r✐❝❛♥

P❤②s✐❝❛❧ ❙♦❝✐❡t②✳

picture of the excitation density. For example, Fig. 10 clearly
shows ligand to metal electron transfer in the excitation density,
which is shown at the calculated charge transfer energy of 14.8

eV in rutile, corresponding to to the main-peak satellite splitting
seen in Fig. 9.

4.2 Extrinsic and Interference Terms, and the Particle-hole

cumulant for XAS

In addition to the interaction between the core-hole and the va-
lence excitations, i.e., intrinsic losses, the photoelectron also in-
teracts with the valence electrons and creates extrinsic excitations,
and there is interference between them.78,79 The cumulant form
for XPS is still valid when extrinsic and interference terms are
considered, although the excitation spectrum β (ω) seen in the
Landau form of Eq. 25 must be replaced with the combined ex-
citation spectrum created by the appearance of the particle-hole
system,34 i.e., γ(ω) = βint(ω) + βext(ω) + βinf(ω), where int/ex-

t/inf denote intrinsic, extrinsic, and interference terms. Thus the
cumulant can also be separated into intrinsic, extrinsic and in-
terference terms. Since the contribution from the extrinsic and
interference terms has roughly the same shape as the intrinsic
spectrum, these effects can be modeled by an energy dependent
amplitude factor R(ω) = αtot(ω)/αint,35,37,80 which can be calcu-
lated within an electron gas model.78 Since intrinsic excitations
dominate at low excitation energy, the factor is approximately lin-
ear, i.e., R(ω) ≈ 1+ aω. Calculations of the extrinsic to intrinsic
ratio show that the extrinsic weight dominates for plasmonic exci-
tations of free-electron metals, although it is not expected to con-
tribute substantially for more localized excitations such as charge-
transfer.75,81 Finally, the particle-hole cumulant can be applied to
XAS and EELS through the convolution seen in Eq. 2. At low
energies near the edge it has been found that extrinsic and inter-
ference terms largely cancel, and the intrinsic spectral function

✽ ⑤ ✶✕✶✸
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alone is a reasonable approximation, as shown in Fig. 11.34,82,83

4.3 Multiplet + cumulant approach

The approach detailed above works quite well for systems with
small to medium correlation strength, where only small satellites
appear. For highly correlated systems, such as the 2p XPS and
XAS spectra some of the transition metal oxides, methods based
on ligand field multiplet models, as well as dynamical mean field
theory have been highly successful,19,20,22 although they are not
fully ab initio. An alternative approach is to calculate the atomic
multiplet spectrum, including the effects of the ligands on the
d-state splittings but not allowing charge transfer, and then to
include charge transfer (as well as other longer range excitations
such as plasmons) through a convolution with the cumulant spec-
tral function,84 i.e.,

A2p(ω) = Aloc
2p (ω)∗AC

2p(ω). (30)

Here Aloc
2p is the spectral function arising from the local Hamilto-

nian, while AC
2p is the cumulant spectral function, which builds

in long-range interactions such as charge-transfer and plasmons.
This approach was inspired by a similar convolution formula de-
veloped to include plasmon excitations in DMFT.85 The cumulant
spectral function is then calculated in real-time as detailed above,
while the local spectral function is calculated via exact diagonal-
ization within the 2p-3d subsystem.86 In order to avoid double

❋✐❣✳ ✶✶ ❑✲❡❞❣❡ ❳❆❙ ♦❢ ▼♦❙2 ❝❛❧❝✉❧❛t❡❞ ✇✐t❤✐♥ t❤❡ ♥♦♥✲✐♥t❡r❛❝t✐♥❣ ❛♣✲

♣r♦①✐♠❛t✐♦♥ ✭❜♦tt♦♠✮✱ ❇❙❊ ✭s❡❝♦♥❞ ❝✉r✈❡s✮✱ ❛♥❞ ❇❙❊ ✰ ❝✉♠✉❧❛♥t ✭t❤✐r❞

❝✉r✈❡s✮✱ ❝♦♠♣❛r❡❞ t♦ ❡①♣❡r✐♠❡♥t ✭t♦♣✮✳ ❚❤❡ ❛♥❣❧❡ ♦❢ ♣♦❧❛r✐③❛t✐♦♥ ✐s

s❤♦✇♥ ❜② t❤❡ ❝♦❧♦rs✳ ❘❡♣r✐♥t❡❞ ✜❣✉r❡ ✇✐t❤ ♣❡r♠✐ss✐♦♥ ❢r♦♠ ❬❏✳ ❈✳ ❲♦✐❝✐❦✱

❈✳ ❲❡✐❧❛♥❞✱ ❆✳ ❑✳ ❘✉♠❛✐③✱ ▼✳ ❚✳ ❇r✉♠❜❛❝❤✱ ❏✳ ▼✳ ❆❜❧❡tt✱ ❊✳ ▲✳ ❙❤✐r❧❡②✱

❏✳ ❏✳ ❑❛s ❛♥❞ ❏✳ ❏✳ ❘❡❤r✱ P❤②s✳ ❘❡✈✳ ❇ ✶✵✶✱ ✷✹✺✶✵✺ ✭✷✵✷✵✮❪✱ ❈♦♣②r✐❣❤t

✭✷✵✷✷✮ ❜② t❤❡ ❆♠❡r✐❝❛♥ P❤②s✐❝❛❧ ❙♦❝✐❡t②✳

counting, the spherical Coulomb interaction terms are neglected
in the local Hamiltonian since they only contribute an overall
shift, and the cumulant is calculated using the density response
to a spherical core-hole. The parameters of the local Hamilto-
nian are given by the crystal field strength and the Slater-Condon
parameters. For calculations of core-level XPS, only a rough esti-
mate is required for the crystal field strength, which we estimate
via the eg, t2g splitting. The Slater-Condon parameters are sen-
sitive to the covalency of the transition metal bonds, which we
take into account using an extension of the FEFF10 code, i.e.,
by calculating self-consistent Dirac-Fock radial functions. This
method gives very similar results to the ab initio Slater-Condon
parameters found using a Wannier state basis.20 Fig. 12 shows the
calculated 2p XPS spectrum of hematite Fe2O3 compared to the
multiplet-only spectral function, and experimental results. Note
the reduction of the spin-orbit- and multiplet-split main peaks at
∼ 0 and 12 eV relative to the multiplet-only spectrum. This reduc-
tion occurs due to the weight transferred to the shake-up satellites
seen at 9 eV lower energies through the convolution with the cu-
mulant spectral function.

✺ ❚❤❡ ❈♦r✈✉s ✇♦r❦✢♦✇ ❢r❛♠❡✇♦r❦

Many of the advanced approaches detailed in the previous sec-
tions require either multiple calculations with the FEFF10 code,
or additional calculations carried out with external software pack-
ages. For example, resonant inelastic x-ray scattering (RIXS) can
be calculated with FEFF10 by itself, but requires several separate
runs, and an external script to handle output to input conversion.
Similarly, the ab initio Debye-Waller factors and the many-body
spectral function convolution both require input from external
codes. In order to simplify these advanced workflows and fa-

✶✕✶✸ ⑤ ✾
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cilitate non-expert use, we have developed a python based work-
flow framework Corvus, which focuses on calculations of spec-
troscopy.26,87 Corvus does this by managing all input and output
translation, as well as the execution of various codes, required for
a given workflow. Users are thus only required to learn one sim-
plified input structure, with input parameters focused on physical
properties that define the problem at hand in a simplified input
file. Other parameters are included implicitly by default. For ex-
ample, to include the many-body satellites for the M-edge XAS of
CeO2, , a user only needs to provide the target property (in this
case named mbxanes), the x-ray edge and absorbing atom, and
the crystal structure in the form of a crystallographic information
file (CIF), as shown in Fig. 13. Corvus then i) creates all required
input files; ii) creates the workflow, and then runs the workflow
which consists of iii) a real-time SIESTA77 calculation of the cu-
mulant spectral function; iv) a FEFF10 calculation of the XAS, and
finally, v) a convolution of the XAS with the spectral function. The
results of this workflow are shown in Fig. 14 and compared to the
quasiparticle spectrum, as well as experimental EELS data.88 The
Corvus software currently has interfaces to a variety of software,
including FEFF10, ABINIT,89 and NWCHEM.90 Corvus is capa-
ble of running a variety of workflows, such as optimized struc-
tures + XAS, RIXS, ab initio Debye-Waller factors, and a recent
development which allows full-spectrum optical constants from
UV to X-ray energies,53 and interfaces with the Materials Project
Database.91

✻ ❙✉♠♠❛r② ❛♥❞ ❈♦♥❝❧✉s✐♦♥

In this review we have summarized a number of recent develop-
ments in the theory and computation of core-level x-ray spectra,
focusing on the advanced methods available within the real-space
multiple scattering (RSMS) code FEFF10. The RSMS theory of
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s♣❡❝tr✉♠ ❛♥❞ ❡①♣❡r✐♠❡♥t✳✽✽

x-ray absorption and related spectra is briefly described, and at-
tention is given to improved ab initio treatments of the quasi-
particle self-energy, e.g., using a many-pole model. This model
improves upon the conventional plasmon pole model by repre-
senting the dielectric function as a set of poles rather than a sin-
gle delta function. The model also treats the energy dependent
broadening seen in the experimental spectra, and can improve
the quantitative analysis of the EXAFS. Interactions with phonons
are treated using ab initio calculations of the EXAFS Debye-Waller
factors. This approach is based on DFT calculations of the dy-
namical matrix and an efficient Lanczos representation of the lat-
tice dynamical Green’s function. These effects are especially im-
portant for the EXAFS analysis of complex systems, where it is
difficult to manage the large number of fitting parameters. The
approach also includes corrections for finite temperatures beyond
the harmonic approximation, since simple relationships allow cal-
culations of the EXAFS third cumulant for example. Finite elec-
tronic temperature effects are incorporated through extensions
which include Fermi-Dirac statistics in the spectrum as well as in

✶✵ ⑤ ✶✕✶✸
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the self-consistent calculation of density and chemical potential.
This allows for calculations of XAS over a broad range of tem-
peratures up to the warm dense matter regime. Coupling these
effects with molecular dynamics or ab initio Debye-Waller factors
allows simulation of systems out of equilibrium, as in ultra-fast
pump-probe experiments. At very high electronic temperatures,
the Fermi function broadens, and excitations to previously occu-
pied states are now allowed, while the edge shifts due to the tem-
perature dependence of the chemical potential. Many-body satel-
lites in XPS and XAS, due to multi-electron excitations can also
be treated, via a convolution of the quasiparticle spectrum with a
many-body spectral function. The spectral function is calculated
within the cumulant approximation for the one-electron Green’s
function. The cumulant is related to the density induced when a
core-hole appears, and is calculated via real-time TDDFT. These
advanced calculations are managed by the python workflow en-
gine Corvus, which allows users to focus on the physics of the
problem at hand rather than the details of the underlying algo-
rithms or the input and output translations necessary for complex
workflows requiring multiple scientific software packages. Many
extensions of this method are possible. For example, for near-
edge spectra full-potential corrections to the RSMS theory and an
improved treatment of excitonic effects, as in the Bethe-Salpeter
equation are desirable.
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