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Abstract 

Glow discharge optical emission spectroscopy elemental mapping (GDOES EM), enabled by 

spectral imaging strategies, is an advantageous technique for direct multi-elemental analysis of 

solid samples in rapid timeframes. Here, a single-pixel, or point scan, spectral imaging system 

based on compressed sensing image sampling, is developed and optimized in terms of matrix 

density, compression factor, sparsifying basis, and reconstruction algorithm for coupling with 

GDOES EM. It is shown that a 512 matrix density at a compression factor of 30% provides the 

highest spatial fidelity in terms of the peak signal-to-noise ratio (PSNR) and complex wavelet 

structural similarity index measure (cw-SSIM) while maintaining fast measurement times. The 

background equivalent concentration (BEC) of Cu I at 510.5 nm is improved when implementing 

the discrete wavelet transform (DWT) sparsifying basis and Two-step Iterative Shrinking/ 

Thresholding Algorithm for Linear Inverse Problems (TwIST) reconstruction algorithm. 

Utilizing these optimum conditions, a GDOES EM of a flexible, etched-copper circuit board was 

then successfully demonstrated with the compressed sensing single-pixel spectral imaging 

system (CSSPIS). The newly developed CSSPIS allows taking advantage of the significant cost-

efficiency of point-scanning approaches (>10x vs intensified array detector systems), while 

overcoming (up to several orders of magnitude) their inherent and substantial throughput 

limitations. Ultimately, it has the potential to be implemented on readily available commercial 

GDOES instruments by adapting the collection optics. 
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1. Introduction

Mapping the distribution of elements in solid samples is critical for understanding the 

underlying mechanisms of natural and engineered materials1-7. There are several elemental 

mapping (EM) techniques currently available but, while they possess different advantages, a 

common limitation is long acquisition times, which can require several hours or more. Glow 

discharge optical emission spectroscopy (GDOES) has been shown to permit EM from within 

the sputtered area when operated in pulsed power mode and sustained under higher-than-typical 

pressures 8-15. Leveraging the inherent GDOES advantages of direct solid sampling, 

simultaneous multi-elemental analysis, fast sputtering rates, multi-matrix calibration schemes, 

and depth profiling in the nm scale, results in ultra-high throughput elemental mapping 

capabilities that can be several orders-of-magnitude faster vs typical techniques 2, 11, 16.

One of the aspects that enables GDOES EM is its coupling to an appropriate spectral imaging 

system for data collection, with several embodiments reported. On the one hand, wavelength-

scan approaches, also known as staring-camera type, allow measuring monochromatic images 

one wavelength at a time, with the advantage of giving access to both spatial dimensions 

simultaneously. The wavelength selection device used influences greatly the GDOES EM 

performance: a monochromator gives access to a wide λ range but λ-scan is slow and it 

compromises light-throughput vs. spectral resolution 8, 9; a dichroic filter is very cost effective 

and can have a large numerical aperture (NA) but the λ range and spectral resolution for each 

filter are very limited, such that tens of filters would be needed for multi-elemental analysis 14; 

acousto-optic tunable filters give fast random λ access and can also have a large NA but they 

have limited λ range and UV capabilities, spectral resolution that varies with λ, and can be costly 

15. On the other hand, line-scan approaches, also known as push-broom type, allow measuring 
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one spatial dimension and the λ dimension simultaneously while the remaining spatial dimension 

has to be scanned. Reported grating spectrograph line-scan systems used for GDOES EM have 

shown large NA, a wide λ range that could potentially be extended into VUV, and fast 

hyperspectral imaging capabilities 10-13. One type of spectral imaging system that has not yet 

been demonstrated with GDOES EM is the point-scan approach, or single-pixel imaging system 

(SPIS). The main reason is that the typically required scanning in the two spatial dimensions 

leads to significantly slower data acquisition. However, the use of a single pixel detector is the 

most hardware cost-effective approach, by at least an order of magnitude, in contrast to the 2D 

array detectors necessary for GDOES EM with the line- or wavelength-scanning approaches. 

 Compressed sensing (CS) is a sampling scheme that allows reconstruction of signals with 

only a fraction of the samples required by the Nyquist theorem, thus allowing for much faster 

data acquisition 17-27. The principles that enable CS are: group sampling, which allows obtaining 

more information per sample and inherent multiplex advantages; incoherence, which translates 

into random selection of groups for sampling to avoid bias and improve the probability of 

including all required components in less measurements; and data sparsity, which refers to 

having most of the signal information contained in only a few components, or ample redundant 

information, such that the data is compressible. Thus, several CS based approaches have been 

demonstrated for allowing much faster data acquisition in single-pixel imaging systems 28-34. 

Herein, a CSSPIS, based on a digital micromirror device (DMD) spatial modulator, is 

developed and adapted for GDOES EM. The effects of the operating and image reconstruction 

parameters are studied with respect to the image fidelity performance and the optimized 

operating conditions are demonstrated with GDOES EM. This will enable taking advantage of 

the SPIS significant cost-effectiveness and make GDOES EM more accessible, while allowing 
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for much faster throughput compared to its traditional SPIS counterpart. An additional potential 

advantage is that this approach opens the possibility to perform EM on commercial GDOES 

systems, typically featuring single-pixel detectors, by adapting the optical collection path with a 

spatial modulator.   

2. Experimental

Compressed Sensing Single Pixel Spectral Imaging System

The GD lamp, previously described in 9, was adapted with a 9 mm cathode sputtering 

diameter. The GD was operated under UHP Ar gas (99.999%) flowing at a rate of 0.15 L/min 

controlled by a mass flow controller (Apex, AX-MC-1SLPM-D/5M) and in conjunction with a 

roughing pump (Edwards, RV12), resulted in a pressure of 14 Torr monitored by a pressure 

gauge (MKS, 901P-11040). The RF power supply (Dressler, Cesar 1350) was pulsed at 1 kHz 

and 4% duty cycle, and the forward power was adjusted to ~350 W with the reflected power <5 

W. A chiller (Thermo Scientific, Neslab Merlin M25) cooled the RF power supply, impedance 

matching network, and GD backing electrode.

Figure 1A shows how the light from the GD was collected with a series of plano-convex 

singlet lenses (Thorlabs, fused silica, 2 inch diameter, 200 mm focal length). L1 collimates the 

light towards a flat dielectric mirror (Thorlabs, fused silica, BB3-E02) that reflects it to L2, 

which focuses the light onto the DMD (Texas Instruments, DLP® LightCrafterTM Evaluation 

Module with DLP 0.3 WVGA chipset). L3 then collimates the encoded light from the DMD and 

L4 focuses the light onto the entrance slit of the monochromator (Chromex, Model 500iS/SM, 

linear dispersion 1.6 nm/mm), which was open to the maximum width of 2 mm. The exit slit 

width was also completely open to 2 mm and a PMT (Hamamatsu, R928P), connected to a high 

voltage power supply (Bertan, 230-05R), was used for detection. 
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The PMT output was split in two with the first part connected to a low noise amplifier (Stanford 

Figure 1. A) Schematic of the instrument setup for CSSPIS from GDOES EM where the 
light is imaged onto the DMD spatial modulator and the resulting encoded image is 
refocused into the monochromator. B) The experimental timing showing the DMD 
projection period and the GD pulsing frequency. Note the different time scales of each 
plot. See Experimental section for further details. 
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Research Systems, Model SR570) followed by a low-pass filter (KROHN-HITE, Model 3342) 

and digitized by DAQ (National Instruments, USB-6259), while the second part was connected 

to a home-built amplifier and digitized by another DAQ (National Instruments, USB-6001). The 

purpose of this was for measuring the full dynamic range with a low-gain branch, which is 

advantageous for measuring the baseline and the highest intensities resulting from just a few 

selected encoding masks, i.e. matrices. However, most of the matrices will yield similar 

intensities, thus using the high-gain branch allows “zooming-in” around these intensities and 

enables to better distinguish the differences that contain most of the information, but the few 

highest intensity data will be appear saturated in this case.    

Image Encoding

Figure 1B&C show the experimental timing diagram. The DMD was setup as a second 

monitor to a computer, such that it projected a video consisting of a sequence of encoding 

matrices. These video sequences of Scrambled Block Hadamard Ensemble (SBHE) structurally 

random matrices (SRM) were produced as previously described 28. Different video sequences 

were produced at various matrix densities, including 512, 1024, 2048, and 4096. In short, the 

image size is 256 x 256 pixels, for a total of 65536 pixels. The matrix density refers to number of 

DMD pixels that simultaneously reflect parts of the image towards the detector, where their 

respective intensities are combined. In addition, video sequences at different compression factors 

were also produced, including 10%, 20%, 30%, 40%, 50%, and 100%. The compression factor 

refers to the fraction of measurements/combinations used to reconstruct the image with respect to 

the ones required by the Nyquist theorem, or in a determined system of equations, which would 

correspond to 65536 for 100% in our case. During all video sequences, each different encoding 

matrix was projected (ON) for ~66 ms, followed by a blank matrix (OFF) projected for ~33 ms 
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that served to block the GD emission from reaching the monochromator. This effectively results 

in a sequence of baseline resolved intensity peaks that enable improved analysis and processing 

of GDOES intensity data collected for each matrix 28.

Data Analysis 

The data analysis and processing consists of several steps. Essentially, the intensity of each 

matrix combination is averaged over its ON time and extracted into a single file. Next, the low-

gain and high-gain intensity data are combined by matching the different scales, which allows 

replacing the saturated intensities in the high-gain data set with the unsaturated ones in the low-

gain set. Then, if necessary, baseline and amplitude drift corrections are applied, where a small 

set of identical encoding matrices, applied before the beginning and after the end of the 

measurement, are used to assess the drift. Finally, two CS algorithms, selected for their speed 

advantages 35, were implemented for image reconstruction, including Two-step Iterative 

Shrinking/ Thresholding Algorithm for Linear Inverse Problems (TwIST) 36 and Gradient 

Projection for Sparse Reconstruction (GPSR) 37. In addition, two different sparsifying basis, 

including 9-7 discrete wavelet transform (DWT) and discrete cosine transform (DCT), were 

utilized. The reconstructed images were median filtered (12x12 block size) and the intensity 

scale normalized to 16 bit.  

3. Results & discussion

The model sample used for studying the effect of the operating/reconstruction conditions on 

GDOES EM CSSPIS was a nickel (75.2%)/chromium (19.4%) alloy substrate (NIMONIC alloy 

75, E3918, 0.005% copper) with pure copper wire surface inserts of 1 mm diameter, separated by 

1 mm edge-to-edge (Figure 2A). Figure 2B shows an end-on picture of the sample in the 
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chamber while the GD is in operation (plasma ON). Given the slit width limitations of the 

monochromator, only part of the GDOES image projected on to the DMD made it through to the 

PMT detector, which is highlighted by the red rectangle in Figure. 2A. Figures 2C to 2H show 

Figure 2. A) Model sample of stainless steel SRM with pure copper inserts. B) End-on view 
of mounted model sample during GD operation (plasma ON). C-H) Reconstructed images 
obtained with the CSSPIS from GDOES EM of the model sample at 510.5 nm, Cu I, under 
different compression factors (matrix density 512, DWT, TwIST). 
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samples of reconstructed spectral images under selected conditions. It is evident that the image 

quality improves as more measurements are obtained, or at higher compression factor 

percentages, particularly from 10% to 30% while higher percentages yield diminishing returns. 

Fidelity Assessment

The fidelity of the spectral images obtained with the CSSPIS was quantified by two methods: 

the more typical peak signal-to-noise ratio (PSNR) method and the complex wavelet structural 

similarity index measure (cw-SSIM). The PSNR method calculates the mean squared error 

(MSE) by doing a pixel-to-pixel comparison between the image of interest and a standard image. 

This is followed by weighing the MSE with the maximum possible pixel value and expressing 

the result in decibels, where higher PSNR values indicate improved fidelity. While the PSNR 

metric has several advantages, including that is simple to compute, it is a global measure that is 

not very well suited to assess perceived visual quality 38. For example, the PSNR value will be 

significantly affected if the image of interest is exactly the same as the standard image but just 

shifted a couple of pixels.

The SSIM method is a slightly more involved calculation but gives a better assessment of 

perceived visual quality 38, 39. In this case, the interdependency of nearby pixels is taken into 

account by only focusing on a small window section, or local group of pixels, of the image-of-

interest (x) and the corresponding one in the standard image (y) at any given time. It compares 

luminance (l, or brightness, measured as the average intensity, µ), contrast (c, measured as 

standard deviation, σ), and structure (s, measured as cross correlation of x and y after mean 

removal, σxy) between the small image sections 38:
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𝑆(𝑥,𝑦) = 𝑙(𝑥,𝑦) ∙ 𝑐(𝑥,𝑦) ∙ 𝑠(𝑥,𝑦) = ( 2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1
) ∙ ( 2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2
) ∙ (2𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3)
where C1, C2 and C3 are small positive constants to stabilize near zero values. The small 

window section is then shifted pixel-by-pixel across the image to yield an SSIM map and the 

total SSIM score is obtained by averaging all the SSIM map values. The total SSIM values are 

expressed in a zero to 1 scale, where values closer to 1 indicate higher fidelity.

The results of the fidelity assessment for the 512 matrix density as a function of compression 

factor are shown in Figure 3. It should be noted that only the part of the image that made it 

through the monochromator entrance slit (brighter part of Figures 2C-H, corresponding to the red 

box highlight of Figure. 2A) was taken into account for the comparison. In general, the PSNR 

values improve from ~28db at 10% compression factor to ~32db at 30%. On the other hand, the 

PSNR stays constant from 30% to 50% compression factor. The SSIM shows a similar trend, 

with values improving from ~0.85 at 10% to ~0.9 at 30%, where they reach a plateau. 

Interestingly, the effect of the algorithm, or sparsifying basis, used during the reconstruction is 

indistinguishable within the experimental error for both fidelity quantification methods. These 

general trends change gradually as the matrix density is increased to 1024 (Figure. S1), 2048 

(Figure. S2), and ultimately 4096 (Figure. 4). For example, the PSNR values keep increasing as a 

function of compression factor, with no evident plateau, and with a steeper slope at higher matrix 

densities. Furthermore, the overall PSNR values obtained are worse as the matrix density is 

increased, particularly at lower compression factors. It is also worth noting that the choice of 

sparsifying basis and reconstruction algorithm start to have an increasingly significant effect at 

higher matrix densities.
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Figure 3. Fidelity characterization, in terms of PSNR (A) and SSIM (B), of GDOES EM 
CSSPIS reconstructed images at 512 matrix density as a function of compression factor. The 
effect of the sparsifying basis/reconstruction algorithm were also studied: DCT/TwIST (♦), 
DWT/TwIST (●), DCT/GPSR (▲), DWT/GPSR (■). 
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The GPSR algorithm, as well as DCT sparsifying basis, performs better at lower compression 

factors and increased matrix densities. This is particularly evident at 4096 (Figure. 4) where a 

paired data t-test (2-tail, significance = 0.05) including all compression factors gives a p-value of 

1.6x10-3 for DCT and 1.1x10-3 for DWT, to confirm GPSR outperforms TwIST. In addition, 

when GPSR is used, DCT outperforms DWT (p-value 1.8x10-2). On the other hand, the effect of 

algorithm and basis starts to once again become indistinguishable when the number of 

measurements is increased to 50% compression factor. It is instructive to see that the visual 

perception-based SSIM at 4096 matrix density shows a similar trend. The better performance of 

GPSR vs TwIST is more evident here (p-values of 9.2x10-6 for DCT, and 3.1x10-5 for DWT), but 

DCT outperforms DWT only up to 30% compression factor (p-values of 1.3x10-2 for GPSR, and 

1.5x10-3 for TwIST), which also put into perspective the more abstract PSNR values. 

The better performance of the 512 matrix density has to do with the corresponding matrix 

signal and its precision. As mentioned above, the matrices, or encoding masks, displayed on the 

DMD enable combining the intensities of several parts of the image at the PMT detector. Each 

matrix is a different combination so it is critical to be able to distinguish between the different 

resulting intensities. When less parts of the image are combined (512 matrix density) the 

differences between the corresponding matrix measured intensities are larger, such that it is 

easier to distinguish the differences under a particular set of signal and standard deviation 

conditions. As more parts of the image are combined (up to 4096 matrix density) the differences 

become gradually smaller, such that the inherent signal and noise conditions play a more 

important role, thus making them harder to distinguish.
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 Of course, there is a compromise between matrix intensity differences and the brightness of the 

light source being studied. For example, under very low light level conditions the overall signal-

Figure 4. Fidelity characterization, in terms of PSNR (A) and SSIM (B), of GDOES EM 
CSSPIS reconstructed images at 4096 matrix density as a function of compression factor. The 
effect of the sparsifying basis/reconstruction algorithm were also studied: DCT/TwIST (♦), 
DWT/TwIST (●), DCT/GPSR (▲), DWT/GPSR (■). 
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to-noise (SNR) level from the combinations coming from the smaller density matrices may start 

to become inadequate, leading to worse performance compared to higher matrix densities, as 

shown in 28. 

Computer simulations of the CSSPIS process were performed to better understand the 

observed trends. In this case, the CameraMan image was used and noise was added with the 

MATLAB function “awgn” (adds white Gaussian noise to signal) at a ratio of signal power to 

noise power of 50 dbW, thus simulating source noise (Figure S3). The image was multiplied 

sequentially by each matrix (binary, 1 and 0) in the corresponding series, and the pixel values in 

each resulting image were integrated. This was followed by the image reconstruction method 

described in the Data Analysis section above.  Figures 5 (512 matrix density) and 6 (4096 matrix 

density), as well as S4 (1024) and S5 (2048), show the PSNR and SSIM as a function of 

compression factor for the simulation experiments. While the absolute PSNR and SSIM values 

are not comparable, the trends are very instructive. For example, there is a general improved 

performance with increased percentages, which is consistent with the experimental data. Also, 

the performance of the 512 matrix density, as evidenced by the higher PSNR and SSIM values, is 

better compared to the 4096 matrix. This is again consistent with the experimental data. The 

trends with respect to effect of the reconstruction algorithm or sparsifying basis are not the same, 

which may be due to the experimental data containing both source and detector noise, while the 

simulated data only has source noise added.
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Figure 5. Fidelity characterization, in terms of PSNR (A) and SSIM (B), of computer simulated 
CSSPIS reconstructed images at 512 matrix density as a function of compression factor. The 
effect of the sparsifying basis/reconstruction algorithm were also studied: DCT/TwIST (♦), 
DWT/TwIST (●), DCT/GPSR (▲), DWT/GPSR (■). 

Page 16 of 24Journal of Analytical Atomic Spectrometry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 6. Fidelity characterization, in terms of PSNR (A) and SSIM (B), of computer simulated 
CSSPIS reconstructed images at 4096 matrix density as a function of compression factor. The 
effect of the sparsifying basis/reconstruction algorithm were also studied: DCT/TwIST (♦), 
DWT/TwIST (●), DCT/GPSR (▲), DWT/GPSR (■). 
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An important aspect to consider is how these parameters would affect the quantitative 

elemental analysis. Thus, the images reconstructed from the data obtained with the optimum 512 

matrix density were used to calculate background equivalent concentrations (BEC), of the copper 

inserts (Figure 7):

𝐵𝐸𝐶 =
0.01 × 𝑘 × 𝑅𝑆𝐷𝐵 × 𝐶0

𝑆𝐵𝑅

where the constant k = 3, RSDB is the relative standard deviation of the background, SBR is the 

signal to background ratio, and C0 is the copper insert concentration at 99%. The signal was 

averaged over the copper insert area, while the background was averaged over a comparable area 

on the substrate.  

Figure 7. Background equivalent concentration (BEC) of copper (Cu I, 510.5 nm) from 
GDOES EM CSSPIS reconstructed images of the model sample at 512 matrix density as a 
function of compression factor. The effect of the sparsifying basis/reconstruction algorithm 
were also studied: DCT/TwIST (♦), DWT/TwIST (●), DCT/GPSR (▲), DWT/GPSR (■). 
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It is interesting to note that in general the BEC value increases, or becomes worse, from 10% 

compression factor compared to 40% (p-value 3.3x10-3). This trend can be explained by looking 

at Figure. 1, where the images recovered at 10% look smoothed, or blurred, compared to 40%, 

which results in lower RSDB values and translates into a lower BEC at 10%. The BEC decreases 

again when comparing 40% to 100% (p-value 2.8x10-2), but this is due to higher SBR at 100%. 

In addition, DWT gives better, or lower, BECs compared to DCT (paired data t-test, 2 tail, 

including all compression factors) with p-values of 2.2x10-5 for GPSR, and 3.9x10-4 for TwIST. 

The BEC values are estimates of detection limits and here they are one to two orders of 

magnitude higher compared to typical ones reported for GDOES bulk analysis, due to several 

factors. First, the use of higher operating pressures here leads to lower sputtering rates and 

corresponding lower emission signals. Nonetheless, this change is expected to be less than an 

order of magnitude. Second, and most important, the detection limits in bulk analysis are 

achieved by integrating the signal for up to 10 s under continuous GD power. On the other hand, 

the PMT here was allowed to collect light for ~0.066 s during each matrix measured. However, 

the GD power is pulsed at 1 kHz with a 4% duty cycle, which lowers the time the GD signal is 

actually collected to 0.00264 s per matrix. Furthermore, one has to take into account the number 

of times the same DMD pixel is included in the total measurement, which comes out to ~154 by 

using the matrix density (512), image pixel density (256 x 256) and compression factor (0.3). 

Thus, the total time in which signal is collected per pixel in the complete measurement here is 

~0.4 s, compared to the 10 s typically used for bulk analysis, which helps to explain the 

difference in detection limits, together with the lower sputtering rates at the higher pressures. A 

similar effect on detection limits is observed when performing GDOES depth profiling studies 

where the signal is integrated for much shorter times, ~0.1 s, compared to bulk analysis.            
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Finally, GDOES EM of a flexible, etched-copper board sample was successfully demonstrated 

with the optimized CSSPIS (Figure 8). A matrix density of 512 was implemented because it 

proved to be optimum in terms of spatial fidelity at the lower 30% compression factor to permit 

the fastest measurement. Also, the DWT sparsifying basis and TwIST reconstruction algorithm 

were used because they showed better BEC values. The CSSPIS measurement is significantly 

faster compared to typical SPIS systems relying on pixel-to-pixel rastering. In fact, the improved 

measurement time is not linear, as the 30% value would suggest, because the intensities from 

many pixels, 512 in this case, are combined at any given measurement. This multiplexing yields 

a significant improvement in SNR ratio at the detector compared to single pixel rastering systems 

and provides for considerably faster data acquisition times. The enhancement would correspond 

to the improvement in SNR, which is ~ equivalent to the number of combined pixels (more than 

two orders-of-magnitude), when the noise is detector limited. The actual measurement time for 

the data shown in Fig. 8 is ~32 min, which is already competitive with other elemental mapping 

techniques. On the other hand, it is at least an order of magnitude slower compared to the time 

required by GDOES EM using line- or wavelength-scan spectral imaging techniques. However, 

the current measurement time here is limited by implementing the DMD as a second monitor 

(and corresponding relatively-slow refresh rate), the pulsed GD power duty cycle, and the signal 

averaging during the time the matrix is projected, which results in a “dilution” of 4% signal in 

96% background. Uploading shorter matrix series directly into the limited DMD memory would 

permit much faster refresh rates and to implement DMD-based synchronized detection strategies, 

as demonstrated for LIBS40, making the current matrix OFF-time unnecessary and enabling a 

significantly improved SBR and lateral resolution9. Such improvements would allow 

significantly faster acquisition times at similar LODs or better LODs at similar acquisition times. 
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Figure 8. A) Etched copper flexible electrical board sample, with red circle showing area 
samples by GD. B) End-on view of mounted copper-board sample during GD operation, with 
red rectangle showing area imaged by the CSSPIS. C) GDOES EM of copper (Cu I, 510.5 
nm) with CSSPIS  under optimized conditions of 512 matrix density, 30% compression 
factor, DWT sparsifying basis, and TwIST reconstruction algorithm.  
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4. Conclusions

A CSSPIS has been tailored and implemented to GDOES EM for the first time, with 

optimization from actual GD plasma emission. In terms of spatial fidelity, the addition of a SSIM 

assessment to the PSNR has allowed a better understanding of the reconstructed images in terms 

of visual perception. The best fidelity performance displayed by the 512 matrix density can be 

attributed to the greater differences in peak intensity measured for each of the encoded matrices, 

where a compression factor of 30% already yields optimum results. The quantitative 

performance, in terms of BEC, shows the DWT sparsifying basis and TwIST reconstruction 

algorithm to be best. 

Under optimized conditions, the CSSPIS approach can be significantly faster (orders of 

magnitude in detector noise limited cases) than the traditional pixel-by-pixel scanning 

counterpart because of the compression and multiplexing properties. Furthermore, while the 

measurements here were performed under non-gated continuous detection, DMDs have the 

potential to allow synchronized gated detection of pulsed plasmas with high temporal resolution, 

as demonstrated for LIBS 40, which would lead to improved SBR and lateral resolution in 

GDOES EM 9. Ultimately, the CSSPIS strategy is also amenable for being adapted to a potential 

implementation on readily available commercial GDOES instruments to allow multi-EM 

capabilities.

 It is worth noting that array detectors can make CS spectral imaging approaches much more 

powerful by allowing many combinations to be measured at the same time and having 

simultaneous access to the wavelength dimension, which results in much faster imaging with 

multi-elemental capabilities. Thus, current work in the PI lab is already underway to incorporate 
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an array detector and enable coded aperture snapshot spectral imaging (CASSI)19, 41 with the 

ultimate capability of capturing a full hyperspectral data cube in a single snapshot. 
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