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Point-of-care SARS-CoV-2 sensing using lens-free imag-
ing and a deep learning-assisted quantitative agglutina-
tion assay†

Colin J. Potter,ab Yanmei Hu,c, Zhen Xiong,a Jun Wang,c‡ and Euan McLeoda

The persistence of the global COVID-19 pandemic caused by the SARS-CoV-2 virus has continued to
emphasize the need for point-of-care (POC) diagnostic tests for viral diagnosis. The most widely used
tests, lateral flow assays used in rapid antigen tests, and reverse-transcriptase real-time polymerase
chain reaction (RT-PCR), have been instrumental in mitigating the impact of new waves of the
pandemic, but fail to provide both sensitive and rapid readout to patients. Here, we present a portable
lens-free imaging system coupled with a particle agglutination assay as a novel biosensor for SARS-
CoV-2. This sensor images and quantifies individual microbeads undergoing agglutination through a
combination of computational imaging and deep learning as a way to detect levels of SARS-CoV-2
in a complex sample. SARS-CoV-2 pseudovirus in solution is incubated with acetyl cholinesterase
2 (ACE2)-functionalized microbeads then loaded into an inexpensive imaging chip. The sample is
imaged in a portable in-line lens-free holographic microscope and an image is reconstructed from a
pixel superresolved hologram. Images are analyzed by a deep-learning algorithm that distinguishes
microbead agglutination from cell debris and viral particle aggregates, and agglutination is quantified
based on the network output. We propose an assay procedure using two images which results in the
accurate determination of viral concentrations greater than the limit of detection (LOD) of 1.27·103

copies ·mL−1, with a tested dynamic range of 3 orders of magnitude, without yet reaching the upper
limit. This biosensor can be used for fast SARS-CoV-2 diagnosis in low-resource POC settings and
has the potential to mitigate the spread of future waves of the pandemic.

1 Introduction
As the pandemic caused by Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) persists and the virus continues to
mutate to evade the human immune response, there continues to
be a need for powerful point-of-care (POC) tests to diagnose in-
fection and limit the impact of new viral mutations.1 Currently,
the main biosensors used in clinical settings are lateral flow as-
says (LFAs), used in rapid antigen tests, and the gold standard
technique of reverse-transcriptase real-time polymerase chain re-
action (RT-PCR) amplification, used to detect viral genetic mate-
rial.2–6 LFAs for SARS-CoV-2 can be implemented in POC settings
or as take-home tests and give a readout of results within min-
utes. However, their drawback is a relatively high limit of detec-
tion (LOD), as there needs to be a lot of viral antigen present to
receive a positive test. Widely used LFAs for SARS-CoV-2 have a
LOD of 3·106 copies ·mL−1, which contributes to a large propor-
tion of tests returning false negatives and can contribute to the
spread of SARS-CoV-2 as infected individuals assume they are not
contagious and fail to limit exposing others accordingly.5–7 RT-

a Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721,
USA. E-mail: euanmc@optics.arizona.edu
b College of Medicine, University of Arizona, Tucson, Arizona 85724, USA.
c Department of Pharmacology, University of Arizona, Tucson, Arizona 85724, USA.
† Electronic Supplementary Information (ESI) available: [details of any supplemen-
tary information available should be included here]. See DOI: 00.0000/00000000.
‡ Present address: Ernest Mario School of Pharmacy, Rutgers, the State University
of New Jersey, Piscataway, New Jersey 08854

PCR by contrast has a very low LOD, from 560 copies ·mL−1 to
1,065 copies ·mL−1 depending on the individual test.8 This en-
ables it to diagnose SARS-CoV-2 infection even before patients
become symptomatic. However, this sensitivity comes at a cost of
a slow turnaround time. RT-PCR tests typically take days to come
back with results, and it requires specialized equipment, training,
and personnel to perform.9,10 A turnaround time of days can re-
sult in patients spreading the virus before receiving results.11,12

To address these issues, several groups have been experiment-
ing with alternative POC biosensors. One promising approach
is an agglutination assay.13–18 It is performed by coating latex
or polystyrene microspheres with a functional capture molecule,
typically an antibody, and mixing these microbeads with the test
sample. In the presence of the target biomolecule or pathogen,
beads will bind together, aggregating and resulting in bead pre-
cipitation from suspension. In conventional agglutination assays,
agglutination is seen qualitatively, not quantitatively, and typi-
cally requires the target to be cultured or amplified in some way
to get enough agglutination to be visible. Agglutination assays are
commonly used in food safety applications, as well as in the diag-
nosis of infectious diseases, and, barring the need for complex an-
alyte amplification techniques, can be used in POC settings.19,20

Recently, lens-free holographic microscopy (LFHM) has been
combined with agglutination assays that make these tests more
sensitive, quantitative, and easier to perform in POC settings than
conventional qualitative agglutination assays.21–23 In these in-
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Fig. 1 Portable QLAB Sensor. a) CAD design of all components of the portable sensor housing. The housing was 3D printed from black PLA. b)
Functional components of the LFHM inside the sensor.

line LFHM systems, a coherent light source is used to generate
an interference pattern from a sample placed between the source
and the sensor and an image of the sample is computationally re-
constructed based on the interference pattern.24,25 This enables
LFHM to maintain a wide field of view (FOV), essentially the size
of the image sensor itself, while achieving a high resolution.26,27

To achieve the sub-micron resolution necessary to resolve mi-
crobeads for agglutination assays, pixel superresolution LFHM de-
signs and corresponding algorithms have been utilized.28–30 This
resolution is necessary to detect subtle changes in agglutination of
microbeads, and has been used to achieve nanogram per milliliter
LODs from these devices.21

Here, we show a portable LFHM-agglutniation assay sensor
based on our previous benchtop quantitative large-area binding
(QLAB) assay.21 Furthermore, our new sensor has been optimized
for SARS-CoV-2 pseudovirus sensing and is coupled with a deep-
learning algorithm that can distinguish beads in the sample from
cell debris and viral particle aggregates in order to aid in compu-
tational speed and accuracy of agglutination quantification. This
sensor can resolve and track 2 µm diameter latex microspheres
undergoing Brownian motion in solution to detect subtle agglu-
tination changes in a sample of over 10,000 beads. Compared
to similar biosensors,23 the one we have developed here utilizes
a unique quantification method for individually resolved beads
in clusters, is robust in handling samples polluted with unpre-
dictable debris, exhibits a large dynamic range, and is accurate
in quantifying analyte concentration. The biosensor is able to
provide a POC readout of SARS-CoV-2 pseudovirus concentration
within 3 hrs of sample collection and has a LOD within an order
of magnitude of RT-PCR tests.

2 Materials and Methods

2.1 SARS-CoV-2 Pseudovirus

The pseudovirus used for these experiments is a pseudotype HIV-
1-derived lentiviral particle bearing SARS-CoV-2 spike protein.
The particle has a lentiviral backbone and expresses luciferase
as a reporter. Viral particles were produced in HEK293T cells
engineered to express ACE2, the SARS-CoV-2 receptor, as pre-
viously described.31–33 Cells were lysed using the Bright-Glo Lu-
ciferase Assay System (Cat: E2610, Promega, Madison, WI, USA).
Lysate was transfered to 96-well Costar flat-bottom luminometer
plates where relative luciferase units (RLUs) were detected using
Cytation 5 Cell Imaging Multi-Mode Reader (BioTek, Winooski,
VT, USA). Luciferase luminescence scales linearly with the con-
centration of pseudovirus copies in a given sample, and enabled
calculation of pseudoviral copies ·mL−1.32 For these experiments,
the initial pseudoviral concentration was determined to be 3·106

copies ·mL−1.
Vesicular stomatitis virus G (VSV-G), a lentivirus similar to the

SARS-CoV-2 pseudovirus, but which does not bear the ACE2 bind-
ing spike, was used as a control to confirm assay specificity. VSV-
G concentrations were not separately quantified using lumines-
cence, but the virus was produced similarly to the SARS-CoV-2
pseudovirus, and a wide range of dilution concentrations were
tested to confirm a lack of agglutination.

2.2 Portable Lens-free Holographic Microscope

The LFHM system is based on an in-line imaging method that
has been previously described and termed the Quantitative Large-
Area Binding (QLAB) sensor,21 but now fully contained in a
light-weight portable housing weighing less than 800 g (Fig. 1).
Briefly, the light source of the system consists of a 15 green light-
emitting diode (LED) array positioned 15 cm above the sample.
LEDs illuminate one at a time for 120 ms each, with a delay
of 15 ms between each LED, resulting in 15 sub-pixel shifted

2 | 1–10

Page 2 of 10Lab on a Chip



images captured over 2.025 seconds. LFHM spatial coherence
is provided by 180 µm diameter hole punches placed just be-
low each LED, and temporal coherence is provided by a band-
pass filter with central wavelength 532 nm and bandwidth 3 nm.
At the base of the biosensor is a complementary metal-oxide-
semiconductor (CMOS) monochromatic image sensor (ON Semi-
conductor AR1335) with a pixel width of 1.1 µm.

Fig. 2 Agglutination assay procedure. a) 2 µm polystyrene beads con-
jugated with streptavidin are incubated with biotinylated ACE2, yielding
ACE2-functionalized microbeads. b) Functionalized beads are incubated
with SARS-CoV-2 pseudovirus within a 1.5 mL test tube on a shaker at
1200 rpm, resulting in microbead agglutination. c) The completed assay
is loaded into the imaging chip via micropipette direct injection.

The liquid sample is loaded into a large-area (65 mm2) mi-
crofludic chamber, or imaging chip, constructed out of 2 layers
of clear, laser-cut polycarbonate and a single No.1 glass cover-
slip constructed in advance of performing the assay (Figure S1†).
The center layer forms the boundary and thickness of the open
chamber and is cut from a 125 µm polycarbonate sheet. Inlet
and outlet ports are cut from a 250 µm thick upper polycarbon-
ate sheet. The coverslip serves as the bottom of the chip and is
placed closest to the image sensor. To ensure optical clarity of
the coverslip and to remove dust and other particles, coverslips
were treated using a piranha solution. For this procedure, 30%
H2O2 was mixed with sulfuric acid (H2SO4) in a 1:3 ratio, then
coverslips were placed into this piranha solution for 1 hr. Treated
coverslips were washed with Milli-Q ultrapure water before be-
ing dried and assembled into the finished imaging chip. All layers
were adhered to each other using UV-curable adhesive (Norland
Products 7230B).

For POC use, a custom housing was designed and then printed
in a FlashForge Creator 3 3D printer with black polylactic acid

(PLA) (Fig. 1a). The housing was designed to optimize deploy-
ment in a portable setting by blocking all ambient light from the
image sensor for maximum optical signal-to-noise ratio. The en-
tire top portion of the housing is hinged, allowing the device to
be opened for easy placement of the microfluidic chip over the
image sensor, and then closed again for imaging. The footprint
of the device is only 15 × 15 cm, and images were captured us-
ing this setup paired with a laptop computer outside of the envi-
ronment in which the LFHM was initially tested and constructed.
Figure S2† shows images of the fully assembled LFHM compo-
nents inside the housing. The total cost of this prototype device
is $1,382, with the majority of the cost allocated to a develop-
ment board attached to the image sensor. Future iterations of this
device would not include this board, reducing the cost to $517.
The cost could further be reduced to $267 by using a different
image sensor, such as a Sony IMX519. The imaging chips can be
fabricated for as little as $0.11 each.

2.3 Particle preparation and agglutination assay

The protocol for performing the agglutination assay is depicted
in Figure 2. Polystyrene microspheres 2 µm in diameter and
conjugated with streptavidin (Nanocs PS2u-SV-1) were diluted
to a concentration of 0.005% or 0.01% weight/volume (w/v) in
1× phosphate-buffered saline (PBS). Solid biotinylated acetyl-
cholinesterase 2 (ACE2) (Sino Biological Inc. 10108-H08H-B)
was added to the microbead suspension to a final concentration of
5.0 or 10.0 µg ·mL−1 of ACE2. This concentration corresponds to
approximately 50,000 molecules of ACE2 per microsphere. Mi-
crospheres and biotinylated ACE2 were incubated for 2 hrs at
25◦C on a shaker at 1200 rpm. Functionalized beads were stored
at 4◦C before use.

Extracted pseudovirus or VSV-G was filtered using a syringe fil-
ter with a 0.22 µm pore size to remove larger cell debris from
the sample. The filtered virus was diluted in Dulbecco’s Modified
Eagle Medium (DMEM) in half-log dilutions ranging from 3·106

copies ·mL−1 to 3·102 copies ·mL−1, with an extra negative con-
trol of pure DMEM. Functionalized microbeads were mixed 1:1
with each pseudovirus dilution for triplicate samples per dilution,
creating 30 samples with a microbead concentration of 0.0025%
or 0.005% and pseudovirus concentration ranging from 1.5·106

copies ·mL−1 to 1.5·102 copies ·mL−1, including the 3 negative
controls. In this procedure, only 40 µL of viral sample is required
per test. A single microbead sample was reserved in pure PBS
for comparison. Samples were incubated for 2 hrs at 25◦C on a
shaker at 1200 rpm and then 25 µL were micropipetted into the
imaging chip. The chamber was sealed using UV-curable adhe-
sive, allowed to sediment for 15 minutes to ensure particles were
at the bottom plane of the chip, and placed inside our portable
LFHM for on-chip imaging of the completed agglutination reac-
tion. Sealing the chip is only necessary for preventing evapora-
tion when storing the chip to make repeated measurements at
later times.
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Fig. 3 Image reconstruction process. The top image is a single LR
hologram captured with the portable LFHM. Green boxes represent the
FOV of a conventional microscope using different objective lenses. Scale
bar = 1 mm. The second row is a small region of interest showing a
comparison of a LR hologram (left) to the reconstructed HR image after
PSR and back propagation (right). Scale bar = 100 µm. The bottom row
is a further zoomed-in region of this image, depicting the LR hologram
(left) and HR reconstruction of fully resolved beads (right). Scale bar =
10 µm.

2.4 Image Processing and Analysis
To process the low-resolution (LR), sub-pixel shifted holograms
captured of the SARS-CoV-2 agglutination assay, the following
workflow was employed. LR holograms are first divided into 5
× 7 partially overlapping patches. A PSR technique that has been
optimized for small targets was used to synthesize a high res-
olution (HR) hologram from the LR holograms for each patch
in parallel.28 HR hologram patches are then back-propagated to
the sample plane. Cardinal-neighbor regularization (weight =
200) and twin-image noise suppression were used to improve the
signal-to-noise ratio of the back-propagated HR reconstructions.
Then, the reconstructed HR patches are stitched back together
to create a single image of the full FOV that is used for assay
analysis. This image processing is performed using the University
of Arizona’s high-performance computing clusters, which are ac-
cessed remotely on a portable takes on average 20 minutes per
image. Performing the data processing on the laptop alone with-
out access to a cluster takes approximately 42 minutes. Simi-
lar holographic reconstruction tasks using parallel processing on

a graphical processing unit (GPU) have demonstrated approxi-
mately and order of magnitude improvement in processing time,
and so processing time could potentially be reduced to just a few
minutes.34–36 Figure 3 depicts LR holograms and their fully pro-
cessed HR reconstructions.

Two methods of feature analysis were used to quantify the ag-
glutination assay from these HR reconstructions. In one method,
image features (monomers and clusters) were isolated by apply-
ing a binary threshold to the reconstructed HR image, and then
finding connected features. Feature area and eccentricity were
calculated and a boundary in this parameter space was auto-
matically determined to separate monomer features from clus-
ters as previously described.21 Cluster size was then extrapolated
based on the given feature’s area. Intensity (brightness) and size
(area) thresholds were selected to include as many true beads
as possible, while excluding non-bead features. To further opti-
mize thresholding, a range of intensity and size thresholds were
scanned through and the combination of values that resulted in
calculated monomer and dimer areas most similar to expected
areas were selected. Bound ratio (BR) was calculated with the
following equation based on the results of the thresholding anal-
ysis.

BR =
Number of Beads in Clusters

Number of Beads in FOV
(1)

The LOD for the overall assay was determined by calculating
the mean and standard deviation of the BR for the negative con-
trol sample and using Equation 2, which combines the mean and
standard of deviation of the negative control data points, to deter-
mine the BRLOD cutoff. The range of SARS-CoV-2 concentrations
with a BR above this cutoff determine the dynamic range of this
assay, while the LOD is given by the lowest concentration where
BR ≥ BRLOD. Similarly, any BR that falls below the lower limit of
detection cutoff, BRLLOD (Eq. 3), is also within the dynamic range
of this assay.

BRLOD = µControl +3σControl (2)

BRLLOD = µControl −3σControl (3)

2.5 Residual Convolutional Neural Network

The second method of image analysis was implementation of a
deep convolutional neural network (CNN) with residual connec-
tions to classify image features (Fig. 4). This network was de-
signed to account for the complex imaging conditions present in
the SARS-CoV-2 agglutination assay that contains cell debris, viral
particles, and other contaminants. To accomplish this, a 4-block
deep CNN with residual connections was designed with the MAT-
LAB Deep Learning Toolbox. This network updates convolutional
filters, weights, and biases according to the built-in stochastic gra-
dient descent with momentum optimizer, and employs L2 regu-
larization to prevent overfitting. Classification loss is calculated
using the following equation and used to update values in the
network:

Loss =− 1
N

N

∑
n=1

K

∑
i=1

witni ln(yni), (4)
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Fig. 4 Residual CNN architecture. Input images of size 60 × 60 pixels are fed individually into the network. Each image passes through the input
block, consisting of a convolutional layer with 16 3 × 3 filters, a batch normalization (BN) layer, and ReLU activation layer. Then the data, now 16
channels wide, is passed to the first of 3 residual blocks. Each residual block consists of 2 residual units, and connections between the blocks contain
pooling layers that reduce the data size by a factor of 42. Each residual block increases the width of the network by a factor of 2. Finally, data is
passed into a fully connected layer which outputs a classification for the input image. Examples of the classification result for 5 input images are
shown in the last column of the diagram.

where N is the number of samples, K is the number of classes,
wi is the weight for class i, tni is the indicator that the nth sample
belongs to the ith class, and yni is probability that the network
associates the nth input with class i.

Training of this network was accomplished by using a single in-
tensity threshold to identify features of interest in several agglu-
tination assay images and cropping a subset (< 1% of the total
features in any given image) of these features into small images
60 × 60 pixels in size. These 1,410 unique images were hand-
classified into 5 categories: features consisting of 1, 2, 3, or 4 mi-
crospheres, as well as a fifth category for cell debris or unknown
features that should not contribute to the calculation of BR. We
disregard cluster sizes greater than 4 because their size cannot
be measured as accurately and we are optimizing our sensor for
very low concentrations of SARS-CoV-2, where very large clus-
ter sizes are rare. To augment the training dataset, the cropped
and hand-classified feature images were rotated and mirrored, to
yield a total of 11,280 images. Of these images, 75% were used
for training and 25% were reserved for validation. Training data
was fed into the network in a random order each epoch to ensure
generalizability of the training. Validation was performed every
2 epochs. A 2-core Intel® Xeon® Gold 5218 2.29 GHz processor
was used to train the network. To prevent overtraining, train-
ing was halted after the classification accuracy of the validation
image set stopped improving.

3 Results and Discussion

3.1 Network training outcomes

CNN training took 1,980 iterations or 30 epochs (Fig. 5a-b). Each
iteration consisted of a batch of 128 training images. After 30

epochs, validation accuracy ceased improving so the training was
halted to prevent overtraining (training accuracy and loss diverg-
ing from validation accuracy and loss). The final validation ac-
curacy of the trained CNN was 82.06%. Due to the complexity
of appearance of the debris in the training images, varied bead
configurations for any given cluster size (e.g. linearly arranged,
beads touching all other beads in the cluster, etc.), and slight
variations in focus of the individual features, the image data was
highly heterogeneous. Because of this heterogeneity, CNN valida-
tion accuracy could not be further improved without sacrificing
generalizability to the broader intended dataset. To account for
this, the CNN was designed to place features with low maximum
softmax probabilities or activations, or ones that could be classi-
fied incorrectly, into smaller feature size categories, rather than
larger ones (Fig. 5c). The net effect of this “rounding down” net-
work behavior is the undervaluation of BR, as cluster size tends
to be undercounted rather than overcounted. Thus, even though
validation accuracy never reached 100%, we are confident that
the network is not artificially inflating the BR for any samples and
that our calculation of LOD for our assay is therefore conservative.
Furthermore, since this behavior is consistent among all samples
tested, we do not suspect that the validation error had a signifi-
cant impact on our assay. Precision and recall measurements for
each classification category are shown in Figure 5, with averages
across all categories of 83.21% and 82.04% respectively.

To ensure the network was not overfit to augmented data, a
test data set of 1,200 images without augmentation was analyzed
using the CNN (Table 1). Unlike the training and validations sets,
the test data set did not have an equal number of images in each
category, and instead the category distribution was representa-
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Fig. 5 Results of CNN training. a) Accuracy of the training and validation data over the course of training. Validation accuracy does not diverge
from the training accuracy over the course of training, indicating the network is not overtraining. b) Loss calculation for the training and validation
data over the same training timespan. Again, validation loss does not diverge from training loss, indicating the network has not been overtrained. The
training duration of 1,980 iterations corresponds to 30 epochs. White and grey chart backgrounds denote 2 epochs in width each. c) Confusion matrix
for validation data classification. The blocks at the right and bottom show the total correct and incorrect classifications in each row and column of
the confusion matrix. 63.83% of all incorrectly classified features are classified as smaller than they actually are, resulting in a slight undervaluation
of bound ratio. Precision and recall for each classification category are shown on the bottom and right respectively, matched with false discovery rate
(FDR) and false negative rate (FNR) respectively. Average precision was 83.21% and average recall was 82.04%.

tive of the distribution seen in real images. The accuracy for this
real-world application of the network was 88.58%. Since the im-
ages of this test set consist predominately of single beads (874 out
of the 1,200), this high accuracy is consistent with the accuracy
values shown in Fig. 5c. To better compare this result to the train-
ing and validation accuracy, images in test data set were removed
and features of size 3 and 4 taken from other sample images were
added such that the categories were balanced and large enough
to provide an adequate comparison (150 images total). The re-
sulting accuracy of 81.33% is within a percent of the validation
accuracy and definitively confirms that this network is not overfit
and performs well for real images.

Table 1 Network output results for test data sets. Training and vali-
dation images are drawn from an augmented data set. Test data are
unaugmented. Balanced test data include equal numbers of images with
0, 1, 2, 3, and 4 beads, while representative test data include a distribu-
tion of bead cluster sizes that is representative of real samples.

Image Data Set Network Output Accuracy
Training 89.28%
Validation 82.06%
Test (Balanced) 81.33%
Test (Representative) 88.58%

The network also exhibited higher maximum softmax proba-
bility values for correctly identified features than for incorrectly
identified features (Table 2). In this case, maximum softmax
probability values represent the relative activation of the network
output layer neurons and give an indication of the “certainty” the
network has for a given prediction, with high values indicative of
a high degree of certainty that the classification is indeed accu-
rate.37 This network behavior was unexpected, but unsurprising
as the network training is designed to minimize training loss (a
more complex measure of network error that includes all softmax
probabilities), rather than maximizing accuracy. Low maximum
softmax probability for incorrectly classified images represents
lower loss than high maximum softmax probability for incorrect

classifications. While softmax probabilities provide some indica-
tion of certainty, and can be used to derive useful statistics, they
should not be used as direct measures of statistical confidence.37

Table 2 Network maximum softmax probability values for image classi-
fication of training and validation data

Mean maximum Mean maximum
softmax probability softmax probability
(correctly classified) (incorrectly classified)

Training 90.31% 63.11%
Validation 90.27% 68.02%

The training time for this network was 175 s. Feature clas-
sification using the trained CNN takes 14.11 s for an average
full field of view sample, which is 2.74× faster than the previ-
ous thresholding-based classification, which takes 38.65 s for an
average full image.

3.2 Pseudovirus sensing
The SARS-CoV-2 agglutination assay dilutions were imaged and
analyzed following the procedures described in Section 2. The op-
timized thresholding analysis and CNN-based results are shown
in Figure 6a and b, respectively. The BRLOD cutoff for thresh-
olding analysis was calculated to be 34.13%. According to this
calculation, the lowest sample concentration in Figure 6a whose
mean minus one standard error of the mean (SEM) falls above
the LOD cutoff corresponds to 1.5·102 copies ·mL−1. However, for
an imaging chamber with 25 µL of sample, one would expect <
4 viral particles in the chamber. Therefore, this point is very un-
likely to be a true LOD and only falls above the LOD cutoff due
to the high variability in the thresholding analysis process. Addi-
tionally, the VSV-G specificity control shows this same high vari-
ability as its concentration changes, even though the BR for this
control should remain constant at or near the BR of the negative
SARS-CoV-2 pseudovirus control at 31.70%. Overall, threshold-
ing analysis had a very high average standard of deviation for
all non-control points of 10.66%. This makes determination of
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Fig. 6 Quantification of microbead agglutination in the presence of SARS-CoV-2 pseudovirus. a) Optimized threshold-based quantification of the
agglutination assay, which fails to find a clear trend in BR as a function of concentration. Over all non-control virus concentrations, the BR shows
an average standard deviation of 10.66%, indicating inconsistency in the threshold-based quantification. Orange points indicate measurement results
for VSV-G, which is used as a negative control. As the viral concentration of the VSV-G was not independently measured, the dilutions of the
sample relative to the stock solution (top axis) were matched to the same dilutions of the SARS-CoV-2 pseudovirus, whose stock concentration was
independently measured, yielding the bottom axis values. b) CNN-based agglutination quantification. Average standard of deviation for the BR of all
non-control virus concentrations is 3.89%. The blue curve is a best fit to Eq. 5 (R2 = 0.974). The LOD based on this curve is 1,270 viral copies ·mL−1.
Orange points are negative control measurements using VSV-G samples diluted as specified in panel (a). The lack of a significant response shows that
this assay is specific to SARS-CoV-2. For both graphs, the red dashed lines are the upper and lower LOD cutoffs, while the green point and dashed
line indicate the BR in pure PBS. Black points indicate triplicate samples for each concentration and error bars are standard error of the mean. c)
Example images classified by thresholding vs CNN. The CNN correctly identified each one of these features, while thresholding did not. Scale bar =
5 µm.

a true LOD from these data impossible, as there appears to be
no clear trend as either virus concentration increases. For this
dataset, thresholding analysis fails as it is not robust enough to
account for the heterogeneous nature of a sample with cell debris
and higher levels of non-specific binding.

For CNN-based analysis (Fig. 6b), the BRLOD cutoff was cal-
culated to be 30.33%. The mean BR corresponding to 1.5·103

copies ·mL−1 is the first to fall above the LOD cutoff. An empirical
curve of best fit, plotted in Figure 6b, was determined according
to the following equation:

BR(x) = Ae−x/10b
−Ce−x/10d

(5)

The functional form of this empirical curve is useful for inferring
the analyte concentration of an unknown sample from its BR, as
described below, but is not intended as a physical model of the
binding process, which is a more complex relationship.21 The
coefficients and 95% confidence intervals are: A = 46.86± 4.11,
b = 5.982±0.125, C = 20.60±4.86, d = 3.753±0.328 (R2 = 0.974).
Since measurements of BR are compared to this curve, the LOD
can be determined by where the curve first exceeds the BRLOD,
which occurs at a concentration of 1.27·103 copies ·mL−1.

Unlike the thresholding analysis (Fig. 6a), the CNN-based anal-
ysis (Fig. 6b) exhibits a clear peak in BR, where higher viral
concentration ultimately leads to bead saturation and therefore
reduced binding, which was observed previously in agglutina-
tion assays for other proteins.21 As a result, it is not possible
to determine the exact concentration of virus in a sample from
a single BR measurement when the BR > 19.40%. Nonetheless,
a BR > BRLOD = 30.33% would be an unambiguous positive re-
sult, which is most relevant for rapid COVID diagnosis. The CNN
resolves the variability seen in the VSV-G specificity control and

those points are seen to lie within the LOD cutoffs, correctly in-
terpreted as a negative result.

Interestingly, the BR for the highest concentrations of SARS-
CoV-2 fell well below the BR for the negative control samples
that still contained DMEM (black points at zero concentration in
Fig. 6b). This can be explained by DMEM causing non-specific
binding.13 For comparison, negative control samples of PBS with-
out DMEM (green point at zero concentration in Fig. 6b), exhibit
a significantly lower BR than the negative control samples with
DMEM. At very high viral concentrations, the beads in the sample
become saturated with viral particles before the beads can collide
with one another. In this way, the viral particles effectively act
as blockers for both specific and non-specific bead-to-bead bind-
ing. Hence, for high viral concentrations, the BR trends toward
the BR found in PBS in the absence of DMEM. This behavior in-
dicates that the use of fully saturated beads as a control for non-
specific binding23 would be inappropriate for this type of agglu-
tination assay because it fails to account for non-specific binding
that occurs as a result of bead-to-bead interactions in different
media. Additionally, this result means that our assay can distin-
guish between low levels and very high levels of virus by defining
a lower LOD cutoff as specified in Eq. 3. For the CNN-based as-
say with 0.0025% bead concentration, BRLLOD = 19.40%, which
corresponds to viral concentrations of 8.45·105 copies ·mL−1 and
greater on the best-fit curve.

Overall, compared to traditional image processing based on
thresholding, CNN-based analysis enables successful and robust
quantification of BR from complex pseudovirus samples, and ex-
tends the assay’s dynamic range by enabling sensing of higher
pseudovirus concentrations whose BR falls below BRLLOD. Fig-
ure 6c shows a selection of features that were incorrectly classi-
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Fig. 7 Inferring a unique analyte concentration using two independent measurements. a) CNN-based agglutination quantification on unfiltered
pseudovirus lysates with 0.005% bead concentration. The LOD cutoffs (red dashed lines) are calculated as 45.72% and 34.86%. The light blue curve
is fitted using Eq. 5 (R2 = 0.962). The green point and dashed line indicate the BR in pure PBS. b) Comparison of binding curves for 0.0025% (blue)
and 0.005% (light blue) bead assays normalized by their z-score: how many standard deviations a measurement is away from the negative control
value. A z-score of ±3 corresponds to the BRLOD and BRLLOD for each assay. c) Flowchart of combined assay to achieve accurate quantification of
viral concentration using the bead dilution method. d) Results of quantification based on the method in (c) performed on the two mean BR values for
each viral concentration. The R2 is 0.993, calculated based on the log of the y-values above the LOD compared to ideal result. e) Flowchart of assay
using the sample dilution method. f) Results of quantification based on the method in (e) performed on the mean BR values from the 0.0025% bead
curve for each viral concentration. The R2 is 0.989, calculated based on the log of the y-values above the LOD compared to ideal result.

fied by thresholding, but correctly classified by the CNN. Unfortu-
nately, there is still a blind spot between 1.5·105 copies ·mL−1 and
1.5·106 copies ·mL−1, where a false negative result would occur
since BRLLOD < BR < BRLOD for these concentrations.

One method to reduce this blind spot and infer specific viral

concentrations from BR measurements throughout the dynamic
range is to perform a second BR measurement on the same orig-
inal sample, but with a higher bead concentration. Our previous
work with agglutination assay-based sensing has shown that in-
creasing bead concentration shifts the binding curve from left to
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right.21 Here, we performed this second measurement on an un-
filtered pseudovirus sample with a 0.005% bead concentration
instead of 0.0025% (Fig. 7a). The higher negative control BR can
be explained by a higher number of bead-bead interactions in the
higher bead concentration, resulting in more non-specific bind-
ing. Since the CNN analyzes small images of individual features,
the network performance was not impacted by a higher bead
concentration or a lack of pseudovirus filtration because those
only increased the number of features classified without chang-
ing their appearance. The only effect an unfiltered sample had
was a slight increase in average standard deviation of non-control
BR measurements: 4.45% compared to 3.89% for filtered sample
at a lower bead concentration (representative images shown in
Fig.S3†). A curve was fitted using Eq. 5 with the following best-fit
coefficients: A = 59.79±4.00, b = 6.429±0.132, C = 20.88±4.60,
d = 4.077± 0.301 (R2 = 0.962). This leads to a LOD of 4.81·103

copies ·mL−1, were this measurement to be used in isolation.

By combining the binding results from the two bead concen-
trations, the exact viral concentration of almost any given sam-
ple (above the LOD) can be inferred due to the relative shift in
binding curves for the two concentrations (Fig. 7b). To incor-
porate this into the assay workflow, the procedure depicted in
Fig. 7c was performed. For example, a BR of 35% using a single
0.0025% bead concentration assay would yield 2 possible viral
concentrations of 3.20·103 copies ·mL−1 or 2.80·105 copies ·mL−1.
However, when combined with a BR of 54% from the 0.005%
bead concentration assay, the true viral concentration of 2.80·105

copies ·mL−1 would be selected. The outcome of this process for
all mean points is illustrated in Fig. 7d (R2 = 0.993 for values
within the assay’s dynamic range). The effect of this extra step
on assay time would only be an additional 20 min for image pro-
cessing, as the incubation and imaging could be done for both
samples concurrently while the additional final calculation step
occurs in a matter of 1-2 seconds, resulting in a total assay time
of less than 3 hrs. Although this procedure is successful in infer-
ring concentration for most of the experiments, a small blind spot
remains, corresponding to where both best-fit curves fall between
the BRLOD and BRLLOD cutoffs at concentrations greater than the
LOD: 7.26·105 copies ·mL−1 to 8.45·105 copies ·mL−1. We expect
that this approach could completely remove the blind spot if an
even higher bead concentration were used for the second mea-
surement.

A second alternate method of performing this assay, which
completely resolves any blind spot using only one binding curve,
is described in Figure 7e-f. By diluting the original sample by 1:10
and performing the agglutination assay on this dilution as well as
the initial sample, both using the same bead concentration, we
receive 2 points along the binding curve that can be used to de-
termine which side of the peak the points correspond to. While
this gives a slightly less accurate measurement of the true concen-
tration (R2 = 0.989 for values within the assay’s dynamic range)
and adds an extra dilution step over the two-bead concentration
method, it nevertheless shows that the blind spot observed in this
assay can be fully resolved through at most one additional mea-
surement.

4 Conclusions

Here, we have shown a portable, LFHM biosensor capable of de-
tecting SARS-CoV-2 pseudovirus concentrations at least as low
as 1,270 copies ·mL−1 within 3 hours, using only 80 µL of viral
sample per test. This LOD is within an order of magnitude of
widely used RT-PCR tests for SARS-CoV-2 and greatly improves
upon the LOD of 3·106 copies ·mL−1 for SARS-CoV-2 LFAs. Addi-
tionally, we have developed a deep-learning based categorization
method that can accommodate heterogeneous solutions by distin-
guishing cell debris and other non-bead particles from microbead
clusters, improving on traditional algorithms in speed, accuracy,
and versatility. We also show that the choice of negative control
beads (fully saturated vs. unsaturated) for high-sensitivity agglu-
tination assays is important by showing that fully saturated beads
fail to take into account non-specific binding that occurs as a re-
sult of exposure to a different liquid medium, potentially leading
to a miscalculation of LOD. Finally, we showed two methods by
which two measurements of BR can be used to compensate for
the blind spots of a single individual assay and accurately deter-
mine the exact viral load of the sample across a dynamic range of
3 orders of magnitude in concentration. Future work will include
reducing sample incubation time to enable more effective POC
deployment, developing additional machine learning algorithms
to assist with computational analysis, and further testing of the
proposed assay to ensure these results are consistent when this
assay is applied with patient samples.
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