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Chemically-informed data-driven optimization (ChIDDO): 
Leveraging physical models and Bayesian learning to accelerate 
chemical research†  

Daniel Freya, Juhee Shina, Christopher Muscob, Miguel A. Modestino*a 

Current methods of finding optimal experimental conditions, Edisonian systematic searches, often inefficiently evaluate 

suboptimal design points and require fine resolution to identify near optimal conditions. For expensive experimental 

campaigns or those with large design spaces, the shortcomings of the status quo approaches are more significant. Here, 

we extend Bayesian optimization (BO) and introduce a chemically-informed data-driven optimization (ChIDDO) approach. 

This approach uses inexpensive and low-fidelity information obtained from physical models of chemical processes and are 

subsequently combined with expensive and high-fidelity experimental data to optimize a common objective function. 

Using common optimization benchmark objective functions, we describe scenarios in which the ChIDDO algorithm 

outperforms traditional BO approach, and then implement the algorithm on a simulated electrochemical engineering 

optimization problem.

Introduction 

Edisonian search approaches are widely used in the 

chemical sciences to discover reactions, process conditions, 

material compositions, or product formulations with optimal 

performance for their intended application. These 

experimental design methods rely on the generation of grids 

of variables where experimentally accessible conditions are 

systematically and/or combinatorically explored. While these 

methods are simple to implement, they often evaluate a 

suboptimal parameter space where the quality of information 

derived depends on the numbers of combinations of variables 

explored, slowing and sometimes preventing the identification 

of optimal conditions.1 These shortcomings represent 

significant impediments for expensive experimental campaigns 

(e.g., during process scale-up, in fine chemicals or 

pharmaceuticals) or those with large design spaces that can 

only afford the implementation of coarse experimental grids, 

underscoring the need for more efficient experimental 

optimization methods
2
. 

 Bayesian optimization (BO) has been widely 

implemented in different fields of research to accelerate 

experimental optimization.
3-9

 BO methods use a surrogate 

model (SM) that describes an objective function and its 

probability distribution in the design space to guide the 

optimization campaign. Each time new experimental data is 

obtained, the SM is updated to increase its accuracy. In this 

way, Bayesian statistics and reasoning can be used to select 

the most informative sequence of experiments and accelerate 

optimization campaigns.10 In recent years, BO has been 

implemented for various applications in the chemical sciences 

including materials discovery and prediction of their 

properties,11-21 design of reactors and chemical processes,22-33 

and the optimization of energy storage materials and 

devices.34-38 Data-driven optimization methods such as BO 

learn and evolve with new experimental data, but they lack a 

priori knowledge of the physical laws that dictate the behavior 

of the chemical system under study. This can result in the need 

for large experimental campaigns to accurately model and find 

the optimal combination of parameters for a given objective 

function. On the other hand, physical models (e.g., density 

functional theory, molecular dynamics, continuum models, 

etc.) could be used to identify optima without the need to 

perform experimental searches, but they often lack the 

accuracy to effectively capture the complexity of real systems 

or require inaccessibly-large computational power. Given the 

advantages and shortcomings of both optimization 

approaches, there is an opportunity to leverage a priori 

chemical knowledge in data-driven optimization to reduce the 

data needs and allow for faster identification of optima.  

Herein, we introduce a chemically-informed data-driven 

optimization (ChIDDO) approach, which is a type of multi-

information source optimization (MISO), where inexpensive 

and low-fidelity information obtained from physical models of 

chemical processes are combined with high-fidelity 

experimental data to optimize a common objective function. In 
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this study, we leverage simulated data to develop a ChIDDO 

approach that can be implemented broadly in experimental 

campaigns. While MISO algorithms have been previously 

implemented to improve BO in computational problems39-41, 

the implementation of ChIDDO can extend these advantages 

to chemical experimentation. In addition, we introduce a new 

acquisition function, modified ranked batch (MRB) that could 

improve the selection of a batch of experiments42. 

Experimental 

BO Algorithm Description 

BO algorithms consist of two main components: a SM and 

an acquisition function. The SM is used to predict the value of 

the experimental objective function, ypred, for any set of 

conditions, x. x is a vector of length d, the number of 

dimensions in the design space. x is bounded by lower and 

upper bounds for each dimension, xLB and xUB, which are 

arrays of the same dimensionality of x. The SM is trained using 

N
exp experimental evaluations of the experimental objective 

function, which results in vector yexp corresponding to Xexp. Xexp 

is a matrix with Nexp rows and d columns. The ith row of Xexp, 

which we denote 𝑥𝑖
𝑒𝑥𝑝 , corresponds to a d dimensional 

parameter vector to be evaluated. yexp is an array of Nexp 

evaluations of the experimental objective function at each 

condition, 𝑥𝑖
𝑒𝑥𝑝 , in Xexp. In this study we use a Gaussian process 

regressor (GPR) with the radial basis function kernel as the SM. 

An acquisition function is used to select the next design 

condition(s) to evaluate, xnext, based on how informative the 

design conditions will be in the goal of optimizing the cost 

function. Here, we can choose to select a single design 

condition or a batch of conditions. In the chemical sciences, it 

is often convenient to run multiple experiments in parallel 

based on equipment capabilities, so we chose to focus on 

selecting batches of design conditions. Many different 

acquisition functions for BO have been developed, and three 

of the most common are expected improvement (EI),43 

probability of improvement (PI),44 and upper confidence 

bound (UCB).45 In addition to these, we have developed a 

modified ranked-batch (MRB) mode sampling function inspired 

by the work of Cardoso et al.
42 The equations for each of 

acquisition functions are provided in the Electronic 

Supplemental Information (ESI). An acquisition function uses 

the current information, Xexp and yexp, and the SM predictions 

to calculate how informative a possible design condition is 

expected to be based on the criteria for the respective 

acquisition function. To determine the most informative 

design point to sample next, a maximization method was used 

to find a local maximum of the acquisition function score. This 

process was repeated 25 times at different initiation points to 

get closer to the global maximum solution. The design point 

with the maximum score was subsequently added to xnext. For 

this study a minimization method was used and the negative 

of the acquisition function score was minimized. The 

minimization method was the L-BFGS-B method from the 

scipy.optimize.minimize package. Depending on the batch size 

used in the optimization campaign, nb, multiple design 

conditions can be added to xnext by repeating this acquisition 

function maximization step. After xnext is selected, the 

experimental objective function value(s) are determined to 

obtain ynext. Subsequently, xnext and ynext are appended to xexp 

and yexp. 

 The EI, PI, and UCB algorithms were run based on their 

implementation in the modAL active learning framework,46 

which is described in the ESI. The general framework for the 

BO algorithms presented was also based on the modAL 

framework. The MRB acquisition function calculated a score 

consisting of three normalized parameters: a distance score, ∆, 

an uncertainty score, Γ, and the objective function prediction, 

Ω. The distance score was calculated as: 

 𝛥 = 1 − 1/ (1 + min√∑ (𝒙𝒊 − 𝒙
𝒊

𝒆𝒙𝒑
)

2𝑑
𝑖=1 )   (1) 

where min√∑ (𝒙𝒊 − 𝒙
𝒊

𝒆𝒙𝒑
)

2𝑑
𝑖=1  is the minimum distance 

between the proposed set of conditions, x, and each of the 
known sets of conditions, xexp.  The uncertainty score, Γ, is the 
standard deviation of the GPR prediction at x normalized 
compared to the maximum and minimum observed standard 
deviation. The objective function prediction, Ω, is ypred at x 
normalized compared to the maximum and minimum 

Figure 1. Process diagram of the ChIDDO algorithm. The purple blocks correspond to the algorithm steps required to incorporate the physical model. The gray blocks correspond 

to steps related to experimental data acquisition. 
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observed prediction. The score that is calculated at each step 
in the minimization process for the respective x is: 

Score = βΔ + βΓ + Ω (2) 

where β is a tradeoff value. A high value of β encourages more 

exploration — i.e., encourages searching unknown areas of the 

design space. A lower value of β encourages exploitation — 

i.e., searching locally near the current maximum prediction. All 

of the acquisition functions include a tradeoff value that 

decreases as more experiments are run, moving from 

exploration to exploitation. For MRB, β changes linearly from 1 

to 0. For UCB, β changes linearly from 4 to 0. For PI and EI, β 

changes logarithmically from around 0.05 to 1x10-7. 

 To initiate the algorithm, 𝑁𝑖𝑛𝑖𝑡  evenly distributed random 

points were chosen as the initial set of experimental 

conditions. Our results show robust performance when a 

random initialization approach is implemented, but other 

methods that ensure good spatial coverage over the design 

space and incorporate a degree of randomness could be 

implemented. The random initialization approach was sone by 

choosing random experiments to perform without considering 

the positions of the other initial experiments. In other words, 

there was no space-filling model for this initialization 

approach. For the BO algorithm without use of a physics model 

(referred to as BO from this point on), only these initial points, 

𝒙𝒊𝒏𝒊𝒕
𝒆𝒙𝒑

, were fit by the GPR to generate the SM. After each batch 

of BO, (x
exp, yexp) increases in size by the batch size, nb. For the 

ChIDDO algorithm, before (xexp, yexp) are passed to the GPR, a 

certain number of design points from the a priori physics 

model (xphys,yphys) are appended to (xexp, yexp). The size of (xphys, 

yphys) decreases as the number of experiments that are run 

increases. For example, if it was decided that a total of 50 

experiments would be run before stopping the ChIDDO 

optimization campaign, Ntotal, and it was chosen to start with 

10 experimental points, the ChIDDO algorithm would add 

(𝑁𝑡𝑜𝑡𝑎𝑙 − size(𝒙𝒆𝒙𝒑)) data points (40 in this case) calculated 

from the physics model. These added points were uniformly 

distributed random design points between the upper and 

lower bounds. This method allowed for the incorporation of 

knowledge of the chemical system under study to help guide 

the initial choice of experiments when less experimental data 

is available, and progressively increases the amount of 

experimental data used to generate SM as more empirical 

evidence becomes available. A general algorithm flowchart is 

shown in Figure 1 and an example of the decision process in 

action is shown in Figure 2.   

 

Benchmark Objective Functions 

Common objective functions for optimization 

benchmarking were selected, filling in as a representation of a 

chemical sciences objective function, and they are described 

further in the ESI. Each objective function has its own set of 

parameters that affect the specific shape of the objective 

function. For example, for the Sphere objective function (an 

ellipse): 

𝑓(𝑥) = ∑ 𝑃𝑖(𝑥𝑖 + 𝑃𝑖+𝑑)2𝑑
𝑖=1    (3) 

the variable, P, is an array of the 2d parameters. For each 

objective function there is a base set of parameters that 

results in a base-case objective function shape. To obtain 

alternate models of the objective functions, P can be randomly 

perturbed around the base parameters. For all of the studies, 

20 alternate models were used as the experimental objective 

functions.  

Depending on the specific objective function, we studied 2-

, 3-, 4- and 6-dimensional spaces. Unless otherwise specified, 

the experimental objective function values, yexp, were exactly 

equal to the objective function calculation, given the set of 

parameter values. 

Under conditions when noise was added, the objective 

function values were calculated as: 

𝑦𝑖
𝑛𝑜𝑖𝑠𝑒 = 𝑦𝑖

𝑒𝑥𝑝 + [(𝑦𝑚𝑎𝑥 −  𝑦𝑚𝑖𝑛)(2 rand(𝑂, 1) − 1)]𝜂 (4) 

where ymax is the maximum value of the objective function, 

ymin is the minimum value of the objective function, and η is 

the noise level, defined as the maximum allowable value that 

could be added or subtracted from 𝑦𝑖
𝑒𝑥𝑝 , which can be viewed 

as a percentage of the range of y. rand(0,1) is a random 

variable drawn uniformly from 0 to 1. The η values that were 

tested were 0.025, 0.05, and 0.1.  

 

Updating the Physics Model Parameters in ChIDDO 

Each physics model was initially defined by a set of base-

case parameters that could be updated during the 

optimization process. These base-case models were used as 

the a priori knowledge in the ChIDDO algorithm. The base-case 

model parameters used are provided in the ESI. Since the 

initial model parameters are only an estimate, the parameters 

were updated after each batch of experiments based on the 

Figure 2. Example of the decision-making process of the BO algorithm using the Sphere 

objective function. MRB was used as the acquisition function, there were 10 initial 

random points (black dots), and subsequent points (in red and labelled in order) were 

selected in batches of 3. 
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new experimental observations. The parameters were updated 

by using a non-linear least square error regressor to minimize 

the error between the experimental data and the physics 

model. The updated model parameters were then used to 

calculate (xphys, yphys) for the following batch. With the 

relatively simple experimental objective functions used in this 

study, this method of updating the parameters is appropriate. 

However, for complex objective functions with many different 

unknown parameters (e.g., continuum models, molecular 

dynamics), other methods for updating parameters may be 

needed. 

 

Baseline Search Algorithms 

Two different baseline search methods were tested: a grid 

search and a random search. 100 trials were done for each 

search method and N experimental points were selected for 

each trial. For the grid search, N equally spaced experimental 

points were selected sequentially between the lower and 

upper bounds of each variable. For the random search, 

conditions were chosen at random from the uniform design 

space defined by the upper and lower bounds. This random 

search did not consider the locations of the previous 

selections, so it was possible to have poor representation of 

the design space (i.e., clustering of points). 

 

Simplified Physics Model 

To study how the algorithm performs when a physical 

model does not accurately represent the chemical process of 

interest, an objective function was built as a linear 

combination of two physics models, while the physics model 

used in ChIDDO was based on only one of them. The values of 

the combined objective function were calculated as: 

𝑦𝑚𝑖𝑥𝑒𝑑 = r ∗ y1 + (1 − 𝑟) ∗ y2   (5) 

where r is the mixing ratio, y1 is the value of the first objective 

function, and y2 is the value of the second objective function. 

For example, the Rosenbrock function could be added to the 

Sphere function with an r of 0.9. In this case, the objective 

function would more closely, but not perfectly, resemble the 

Rosenbrock function, as seen in Figure 3. 

 

Electrochemical Model Description 

To simulate testing the BO/ChIDDO algorithms on an 

experimental chemical system, a hypothetical electrochemical 

system of reactions was considered:  

A + B + e− → 𝐶  (6) 

2A + B  + 𝑒− → 𝐷 (7) 

3A + B + e−   → 𝐸 (8) 

2B + e−   → 𝐹 (9) 

The chosen reaction resembles the 

electrohydrodymerization of acrylonitrile to adiponitrile, the 

largest organic electrosynthetic process practices in industry.1, 

47, 48  

The rates of these reactions were modelled by Butler-

Volmer kinetics in the form: 

𝐽𝑖 = 𝐽𝑖
0 ∏ (𝑐𝑗

𝑠𝑢𝑟𝑓
)γ𝑖𝑗

𝑗=𝐴,𝐵 exp((α𝑖𝐹η𝑖)/𝑅𝑇)  (10) 

where Ji is the current density of the respective reaction, i, ji
0 is 

the exchange current density of the respective reaction, cj
surf is 

the electrode surface concentration of the respective reactant, 

j (A or B), γij is the order of reaction for the respective reactant 

and reaction, αi is the average charge transfer coefficient 

between the two reactants for the respective reaction, F is 

Faraday’s constant, ηi is the overpotential for the respective 

reaction, R is the gas constant, and T is the temperature in K.  

 The reactions are simulated in a 1-D domain, representing 

the diffusion boundary layer, on one end bounded by the bulk 

electrolyte solution and the other end the electrode surface. 

The Nernst-Planck equation was used to model the 

concentration change of each species using diffusion, 

migration, and generation terms: 

 
∂cj

∂t
=

∑ 𝐽𝑖𝑗

𝐹∗Δ𝑥
+ 𝐷

∂2𝑐𝑗

∂𝑥2
+

𝐷𝑧

𝑅𝑇

∂𝑐𝑗

∂𝑥

∂Ф

∂𝑥
                (11) 

Figure 3. Example of the addition of two dissimilar objective functions. The Rosenbrock function and Sphere function are shown using their respective base case parameters. 
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Where cj is the concentration of the respective reactant or 

product, j, ∑jij is the sum of the production/consumption rates 

for the respective species over each reaction, i, that the 

species participates in, ∆x is the spacing between each point in 

the model, z is the charge of the species (chosen to be 1), and 

∂Ф/∂x is the potential gradient.  

 The Faradaic efficiency (FE) of product D was the value to 

be optimized. FE is a metric that measures how much of the 

current participates in the desired reaction. In this case, FE is 

calculated by dividing the amount of D produced by the total 

of all produced species (including D). In this system, the 

concentrations of the reactants could have a large effect on 

the FE. Therefore, the optimization variables in the 2D design 

space for this reaction were the bulk concentrations of 

reactants A and B. Due to the reaction rates and reaction 

orders of the different reactions, an optimal set of reactant 

concentrations could be located in the design space. 

 

Data Availability 

 The code used for all the experiments can be found in a 

public repository
49

. 

Results 

BO Improvements over Edisonian Approach 

To demonstrate the advantages of implementing a BO 

strategy over an Edisonian approach, we studied the 

performance of the different optimization approaches on 

common benchmark functions. Each of these benchmark 

functions has a different shape and optimization complexity, 

and by running the algorithms on these different objective 

functions, we attempted to gain insight into the behavior of 

the different algorithms. For conciseness, here we present the 

results for various optimization runs using the Sphere function 

(Figure 4). A full list of the objective functions, their equations, 

the base parameters, and optimization results can be found in 

the ESI.  

  In our framework, we consider experimental sets, S, which 

consist of Nexp number of experiments with conditions xexp 

resulting in output performance, yexp. The purpose of the BO 

algorithm is to maximize yexp in the fewest number of 

experiments. The output of the algorithm generates a set of 

(x
exp

, y
exp

) results that can be plotted and compared to 

Edisonian experimental sets that follow either a grid or a 

random search approach. We evaluate two performance 

metrics: the normalized deviation from the optimum value, dy, 

and the minimum distance from the optimum, dx, identified by 

each set of experiments. These two quantities are calculated 

as,  

  dy = min
𝑦𝑚𝑎𝑥−𝑦𝑒𝑥𝑝

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
  (12) 

 𝑑𝑥 = min√∑ (𝒙𝒆𝒙𝒑 − 𝒙𝒐𝒑𝒕)2𝑑
𝑖=1    (13) 

where ymax is the maximum possible value of the cost function 

within the constraints of the experimental parameters and ymin 

is the minimum possible value of the cost function within the 

constraints of the experimental parameters.  

In the following studies, the different algorithms (BO and 

ChIDDO) are run on 20 different Sphere functions which serve 

as simulated experimental objective functions. Since the 

experimental objective functions are different, there was some 

variance in the results between the 20 runs. Therefore, the 

graphs shown in the following figures show the average of the 

20 runs as a solid line, and a shadow around the solid line 

representing the standard deviation of the 20 runs. In Figure 4, 

dy is plotted against the number of experiments, N, comparing 

the Edisonian methods with BO and ChIDDO.  The plots for dx 

can be found in the ESI. Figure 4A shows how the different 

search algorithms compare using the 2D Sphere objective 

function. Even for this simple, parabolic function, the 

systematic grid search and random search underperform 

comparatively to BO or ChIDDO. dy after 30 experiments, dy30, 

were 0.008 and 0.023 for the grid and random search 

algorithms, respectively. In comparison, dy30 for BO and 

ChIDDO were both on the order of 10
-3

. As the design space 

moves to higher dimensions, Figures 4B and 4C show that the 

differences between the algorithms increase with dimension 

size. For the 3D Sphere objective function the enhancements 

Figure 4. dy versus number of experiments, N, comparing BO and ChIDDO with the Edisonian random and grid search. (A) 2D Sphere, (B) 3D Sphere, (C) 4D Sphere. For each curve, 

20 separate searches, S, were performed, and the average of the results are the lines shown. The shadow around each of the lines represents the standard deviation. For each of 

the BO/ChIDDO experiments, the MRB acquisition function was used. The objective function parameter information is provided in the Supplemental Information. 
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are more drastic with dy30 being two orders of magnitude 

smaller for BO compared to the Edisonian algorithms. Because 

of the larger design space to sample, the grid and random 

search methods are not capable of searching a fine enough 

space to find values close to the optimal. It is of interest that 

the dy30 for BO and ChIDDO were very similar, possibly because 

the Sphere objective function has a well-defined optimum and 

is therefore easy to identify. As the number of dimensions 

increases, ChIDDO tends to find near optimal values with 

fewer experiments than BO. This enhancement is likely 

because ChIDDO relies on the physics model initially to help 

more rapidly locate optimal conditions. 

 

Comparison of Different Acquisition Functions 

In order to compare how the different acquisition functions 

behave at identifying optima in objective functions of different 

dimensionality, Hartmann functions with 3, 4, and 6 

dimensions were analyzed and the results are shown in Figure 

5. This  

objective function was chosen due to its more complex 

structure (i.e., multiple local optima). Results from other 

objective functions are provided in the ESI. Figures 5A,B show 

a comparison of performance when different acquisition 

functions are used on a 3D Hartmann function. The dy30
 values 

for MRB, EI, PI, and UCB using BO were 0.041, 0.069, 0.045, 

and 0.183, respectively. It appears that all the acquisition 

functions behaved similarly except for UCB, which shows an 

order of magnitude worse performance. By the end of the run, 

it appears that all the acquisition functions reach a similar 

value of dy. For the comparison on the 3D Hartmann function 

using ChIDDO shown in Figure 5B, PI and MRB appeared to 

perform the best with dy30 values of 0.003 and 0.032, 

respectively, compared with EI (0.056) and UCB (0.182).  

Figures 5C,D show the comparison on the 4D Hartmann 

function using BO and ChIDDO, respectively. Interestingly, all 

the acquisition functions perform similarly with dy,30 values on 

the order of 10-3 or lower and they all reach low values very 

quickly. The comparison on the 6D Hartmann function is 

shown in Figures 5E,F. When using BO, all the acquisition 

functions appear to perform similarly with dy,30 values of 0.218 

(MRB), 0.134 (EI), 0.195 (PI), and 0.205 (UCB). It is important to 

note that the standard deviations for the 6D graphs are much 

larger than for the smaller dimensions. This indicates that the 

different random starting conditions affected the dy values 

more for the 6D space compared with the 3D and 4D spaces, 

due to the larger complexity of the optimization process with 

increased dimensionality. Figure 6F shows the comparison 

using ChIDDO. The dy,30 values for MRB, EI, PI, and UCB were 

0.079, 0.021, 0.027, and 0.149, respectively. In addition, the 

standard deviation of dy is much smaller for ChIDDO than for 

BO, indicating a more consistent optimization. 

When comparing the performance of BO to ChIDDO, it 

appears that the ChIDDO algorithm performs similarly or 

better for all of the objective functions. These results show 

that the ChIDDO algorithm does improve the performance 

initially, since the physics model information has a larger 

impact when fewer experiments are available. 

 

Quantifying the Effect of Experimental Noise 

So far, we have assumed that experiments run under 

conditions, xi, result in exact values of the objective function of 

interest, f(𝑥𝑖) = 𝑦𝑖. However, experimental measurements 

often possess a significant degree of noise. To quantify the 

effect of the experimental noise and to determine the 

robustness of the BO and ChIDDO algorithms to noisy 

experiments, different levels of random noise were added to 

the objective functions.  

Figure 6 compares dy for different levels of noise using the 

BO and ChIDDO algorithms with the MRB acquisition function. 

For the case of the 3D Hartmann using BO (Figure 6A), the dy 

for the highest noise level studied (i.e. η=0.1) appears to be 

slightly higher than the other noise values until about the 37th 

experiment when dy approaches the same value for all noise 

levels. For the 3D Hartmann function using ChIDDO in Figure 

6B, the observations are similar to that of BO as the noise had 

only a small impact on the optimization. Interestingly, the dy 

values for the experiments with noise are not substantially 

Figure 5. dy versus number of experiments, N, comparing the MRB, EI, PI, and UCB 

acquisition functions using BO and ChIDDO. (A) 3D Hartmann - BO, (B) 3D Hartmann – 

ChIDDO, (C) 4D Hartmann – BO, (D) 4D Hartmann – ChIDDO, (E) 6D Hartmann – BO, (F) 

6D Hartmann - ChIDDO. For each curve, 25 separate searches, S, were performed, and 

the average of the results are the lines shown. The shadow around each of the lines 

represents the standard deviation. 
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different to the experiments without noise, demonstrating the 

robustness of BO and ChIDDO.  

This behavior is also observed for the case of 4D Hartmann 

function in Figures 6C,D. When using BO, the dy for η=0.1 

remains higher than for the other noise levels until 

approximately the 32nd experiment when the dy values start to 

converge for other noise levels. In the case of the 4D 

Hartmann function using ChIDDO, the dy values for each noise 

level are similar after the 25th experiment. Prior to this, the dy 

values for η=0.1 are higher than that of the other noise levels. 

Contrary to the 3D Hartmann function, the experiments with 

no noise for both ChIDDO and BO have lower dy values than 

the experiments with noise.  

Figures 6E,F show the noise comparisons for the 6D 

Hartmann function. When using BO, all noise levels present 

similar values for dy until experiment 30th, and a slightly higher 

values for η = 0.1 beyond that point. These results indicate 

that the BO algorithm may be more resistant to noise effects in 

low-dimensionality design spaces and that overall noise effects 

are weak within the levels studied. Figure 6F shows that the 

ChIDDO algorithm performs much better overall for the 6D 

Hartmann function compared to BO. When ChIDDO is 

implemented on 3, 4 and 6D Hartmann functions, our 

observations suggest that noise has only a small impact on the 

optimization but the values of dy are lower than those found 

with BO for a given number of experiments.   

 

Quantifying Effects of Physical Model Accuracy 

Experiments in the chemical sciences are often performed 

under complex geometries, involve multiple kinetic and 

transport processes, and require molecular-level descriptions 

of the species involved for an accurate representation. 

Detailed multidimensional models of these complex chemical 

systems are often intractable, requiring simplified semi-

empirical models that capture with an acceptable level of 

accuracy the experimental observations. These simplified 

physical models can still be used in ChIDDO algorithms as they 

serve as a guide to the optimization and can be complemented 

and improved by experimental data. To understand how less 

accurate models affect the performance of our method, we 

attempted to optimize a mixed objective function that 

consisted of a linear combination of two functions (Equation 

5), while ChIDDO used a physics model that described only one 

of the functions. Figures 7A and B show dy as a function of 

number of experiments for the combination of the 3D Sphere 

and 3D Hartmann objective functions, while Figures 7C and D 

present similar results for 6D objective functions. For the 

example where the Sphere function is used as the physics 

model, an r of 0.1 indicates that the output value for each set 

of conditions is 10% of the 3D Sphere output value plus 90% of 

the 3D Hartmann output value. Therefore, a low r indicates 

Figure 6. dy versus number of experiments, N, comparing different noise levels, η , 

represented by lines of different colors. (A) 3D Hartmann - BO, (B) 3D Hartmann - 

ChIDDO, (C) 4D Hartmann - BO, (D) 4D Hartmann – ChIDDO, (E) 6D Hartmann – BO, (F) 

6D Hartmann - ChIDDO. For each curve, 25 separate searches, S, were performed, and 

the average of the results are the lines shown. The shadow around each of the lines 

represents the standard deviation. For each of these studies, the MRB acquisition 

function was used. 

Figure 7. dy versus number of experiments, N, for different objective function mixing 

ratios, r. Larger r means more similarity between physics model and experimental 

objective function. (A) 3D Sphere mixed with 3D Hartmann using Sphere as the 

simplified physics model. (B) 3D Sphere mixed with 3D Hartmann using Hartmann as 

the simplified physics model. (C) 6D Sphere mixed with 6D Hartmann using Sphere as 

the simplified physics model. (D) 6D Sphere mixed with 6D Hartmann using Hartmann 

as the simplified physics model. For each curve, 25 separate searches, S, were 

performed, and the average of the results are the lines shown. The shadow around 

each of the lines represents the standard deviation. For all of these graphs, ChIDDO 

was used as the AL algorithm and MRB was used as the acquisition function. 
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that the physics model and the experimental points are 

dissimilar. Conversely, when r is high, the physics model and 

the objective function are close to each other, and one would 

expect dy to decrease more rapidly with the number of 

experiments than in the case of low values of r. Interestingly, it 

appears that the similarity between the physics model and the 

objective functions only makes a small difference in 

performance. In these figures it is important to note that since 

there is a combination of objective functions, the optimum 

values change for each r, resulting in different dy values after 

the initial points are run. However, the curves in Figure 7A for r 

= 0.1 and Figure 7B for r = 0.9 are based on the same objective 

function values. From these results, it can be observed that 

using the Hartmann function as the physics model allowed for 

improved performance. This could be due to the fact that the 

Hartmann function incorporates a higher degree of complexity 

than the Sphere function. For these objective functions with 

parameters that are easy to regress, the simplified physics 

model was able to be modified enough to predict values close 

to the combined objective function. Even with little similarity 

between the simplified physics model and the combined 

objective function (r = 0.1), the algorithm had adequate 

performance. However, when implementing more complex 

physics models that cannot be regressed as easily to match the 

experimental values, a simplified physics model may show 

inadequate performance. 

Simulation of an Electrochemical Optimization 

In the previous sub-sections, we demonstrated the 

development of ChIDDO using model functions that are 

difficult to optimize but that are not based on chemical 

processes. To illustrate the implementation of ChIDDO in a 

chemical process, we attempted to optimize the Faradaic 

Efficiency (FE) of product D in the simulated set of 

electrochemical reactions described in Equations 6 – 9. This is 

a common objective function in electrochemical processes, 

where it is often desirable to selectively generate a single 

product. We studied how BO and ChIDDO performed on 

electrochemical models with two, three, and four dimensions. 

For two dimensions, the bulk concentrations of two reactants 

were the two variables (0.1 – 1 mol dm-3). Voltage (2V – 4V) 

was used as the third variable and temperature (25C – 80C) 

was used as the fourth variable. Figure 8 shows the 

performance of the BO and ChIDDO algorithms on the 

different dimension electrochemical models. For the 2D and 

3D optimizations, the performance of BO and ChIDDO was 

similar. However, when the fourth dimension was added, 

ChIDDO outperformed BO, especially at a low number of 

Figure 8. dy versus number of experiments, N, comparing different noise levels, η , represented by lines of different colors. (A) 6D Hartmann – BO - PI, (B) 6D Hartmann – BO - EI, 

(C) 6D Hartmann – BO – MRB. For each curve, 25 separate searches, S, were performed, and the average of the results are the lines shown. The shadow around each of the lines 

represents the standard deviation. For each of these studies, the MRB acquisition function was used.  

Figure 9. dy versus number of experiments, N, for different electrochemical physics model information. “Full” indicates the model is predicting the same information as the 

objective function. “No E”, “No F”, and “No EF” indicate the removal of Equations 8 and/or 9 from the physics model information, resulting in a less informative model. (A) 2D 

electrochemical model. (B) 3D electrochemical model. (C) 4D electrochemical model. For each curve, 25 separate searches, S, were performed, and the average of the results are 

the lines shown. The shadow around each of the lines represents the standard deviation. For all of these graphs, ChIDDO was used as the AL algorithm and MRB was used as the 

acquisition function. 
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experiments. This shows that the physics model allowed the 

algorithm to identify areas close to maximum without having 

to search the entire space.  

 The electrochemical model used in this study has 4 

different parallel reactions (Equations 6-9). It is common when 

simulating a complex reaction network that not all the 

intermediates or products are known. To test the robustness 

of the ChIDDO algorithm to incomplete physics models, 

Equation 8 and/or 9 was removed from the set of physics 

model reactions. When the full model was used as the physics 

model, a continuous improvement can be seen as more 

experiments are incorporated, as seen in Figure 9. However, 

when one or two reactions are not included in the physics 

model, the algorithm is not able to improve the optimal value 

after the first few experiments. This could be the case if the 

simplified physics model does not agree with the values of the 

true objective function, leading to experimental selections that 

are far from the optimal values. After observing the model 

data from the simplified models, the objective values for the 

design space have different shapes and magnitudes than the 

experimental objective function. Examples of the simplified 

physics model data are shown in the Supplemental 

Information. After a large number of experiments, the GPR 

prediction starts to become dominated by the experimental 

results and the exploration rate decreases, ultimately 

prompting the algorithm to select suboptimal experiments in 

close proximity to regions with low dy values found during the 

early stage of the optimization. This indicates that it is 

important to have high accuracy in the physics model, or to 

extend the exploration phase of the algorithm if the 

information used in the physics model has large uncertainty.  

Conclusions 

This work introduced the ChIDDO approach, an 
optimization methodology where information from physical 
models of chemical processes is used synergistically with 
experimental data to potentially improve BO performance. 
Our results show that both BO and ChIDDO outperform 
systematic grid or random searches. The ChIDDO algorithm 
improves the initial performance of the optimization of various 
types of objective functions, but as more experimental results 
become available, the performance of BO and ChIDDO tend to 
converge. The advantages of the inclusion of physical models 
are more pronounced in optimization problems of high 
dimensions. This is evident in the case of a 6D Hartmann 
function, where dy values for ChIDDO were substantially lower 
than the BO dy values, while in the case of 3D and 4D 
Hartmann optimizations the difference is minimal. Similar 
results were observed when using data with and without 
noise. Interestingly, the standard deviation between different 
experiment was smaller when using ChIDDO, indicating a more 
consistent optimization regardless of the experimental 
observations. We also explored scenarios when the physics 
model may not accurately describe the experimental objective 
function. In these scenarios, the effect of the inaccuracy of the 
physics model depends on how easy the physics model can be 
regressed and modified to resemble take into account the 
experimental points. For the more constrained physics model 

used in the electrochemical models, the effect of an inaccurate 
physics model was drastic. Overall, the importance and 
potential performance improvements afforded by the physics 
model information progressively decreases as experimental 
information increases, and ChIDDO approaches become 
increasingly similar to BO. Our findings suggest that while the 
inclusion of physical models of chemical processes may aid the 
optimization of processes with a large number of optimization 
parameters, the improvements provided in low-dimensionality 
optimization problems, such as the 2-D electrochemical 
reaction optimization example presented, are not significant 
and data-only approaches are appropriate to rapidly identify 
optima.  
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