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Abstract

A computational algorithm to model an integrated photovoltaic-electrolysis-battery system is

presented with the goal of identifying the system’s optimal size, from a Pareto Front analysis

perspective, that maximizes the hydrogen production rate, minimizes the levelized cost of energy

(LCE) and total system’s cost, while targeting a net-zero grid energy operation. Over 2 million siz-

ing combinations were evaluated, 10 were chosen as the Pareto Front for this optimization problem,

with hydrogen production capacities between 36-122 Nm3/h and LCE values close to 0.2 $/kWh.

The results demonstrated that optimizing the system’s cost and hydrogen production rate implicitly

ensures LCE is minimized. The identified Pareto Front serves as a design guide, enabling the design

of arbitrary plant capacities by multiplying a Pareto optimal point by a factor, while guaranteeing

the new point still lies within the Pareto Front. This computational platform to model integrated

solar-hydrogen systems can be extended to more complex hybrid systems.
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Nomenclature

ACS Annual cost of the system ($/yr)

AM Air mass

ast Apparent solar time

Cap Battery capacity (kWh)

Ca,j Annual cost of component j ($/yr)

CaCapital Annualized capital cost ($/yr)

CaO&M Annualized operation and maintenance cost ($/yr)

CaRep Annualized replacement cost ($/yr)

CRE Capital recovery factor

DoD Battery depth of discharge (%)

Ean Annual energy produced by the PV system (kWh/yr)

Eb Battery energy (kWh)

GEIF The grid energy interaction factor

Gcloudy Solar irradiance of a cloudy day (W/m2)

GD Direct component of solar irradiance (W/m2)

GF Diffuse component of solar irradiance (W/m2)

GG Global irradiance (W/m2)

Gsc Solar constant (=1366 W/m2)

Gtotal Total solar irradiance (W/m2)

Io Dark saturation current (A)

Iph Photo-current (A)

i Real discount rate

LCE Levelized cost of energy ($/kWh)

M Number of electrolysis stacks connected in parallel

Mpv Number of PV modules connected in parallel

N Number of cells connected in series
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NGE Net grid energy (kWh)

nH2 Hydrogen production rate (mol/s)

nj Lifetime of the jth component (PV module, electrolyzer, battery) (yr)

~ni Vector normal to and pointing out of the PV module surface

Pe Power of the Electrolyzer (kW)

Pmp Maximum power point of the PV module (kW)

Rs Series resistance (when used in diode equation) (Ω)

Rsh Shunt resistance (Ω)

RNGE Relative net grid energy (%)

~s Solar radiation vector

SLF The satisfied load fraction

STH The solar to hydrogen conversion efficiency (%)

td Number of days past the most recent winter solstice

UF The utilization factor

Uj Unit capital cost ($/kW)

UO&M,j Unit operating and maintenance cost ($/kW)

VH2 Hydrogen volumetric production rate (Nm3/h)

Vmp Maximum power voltage (V)

Voc Open-circuit voltage (V)

X Dimensionless concentration factor

z Site elevation (km)

β Diode ideality factor

δ Earth’s declination at td = 0 (= 23.44o)

ζ Zenith angle (o)

η Overpotential (V)

ηcon Converter efficiency to/from utility grid (%)

ηb Battery round-trip efficiency (%)
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θ Longitude (o)

θtilt PV module tilt angle (o)

λy Angle representing Earth’s mean orbit (o)

φ Latitude measured north of the equator (o)

1 Introduction

Currently, finite fossil fuel resources supply the vast majority of the world’s energy demand [1].

The scarcity of fossil fuel resources, the rising global energy demand, and the measurable climate

change have stressed the need for renewable energy sources [1].

Hydrogen, as an energy carrier, is a promising candidate to supply the world’s energy demand.

Nevertheless, significant technological barriers must be overcome for hydrogen to be competitive

with current energy resources [2]. Research interest is growing in hydrogen-economy based applica-

tions through either enhancing current technologies or designing new production processes, enabling

the production of hydrogen in an efficient and cost-effective manner. In addition to production,

challenges in hydrogen storage, transportation, and distribution must be tackled simultaneously

before the hydrogen economy can function at grid-scale level applications [3].

Currently, up to 96% of hydrogen production is fossil fuel based, which poses significant long-

term environmental threats [4]. The hydrogen produced in such methods is referred to as grey

hydrogen [5]. When the greenhouse gas emissions are captured or mitigated in the production

process, then the produced hydrogen is classified as blue [5]. Green hydrogen is when renewable

energy sources are utilized in the process, with no to minimum carbon emissions levels [5, 6].

Hydrogen production by water electrolysis is widely accepted to be the most sustainable source

of green hydrogen production, especially when integrated with renewable energy sources such as

solar or wind energy [4]. It also has the advantage that it is capable of producing extremely pure

hydrogen (>99.999%), which is ideal for some applications such as fuel cell vehicles [7]. Despite it

being known for over 200 years, hydrogen production from water electrolysis constitutes less than

4% of the current hydrogen economy [8].

Research efforts are still underway to optimize the design and operation of sustainable hydro-

gen production systems. Gibson and Kelly [9] investigated a coupled PV-electrolysis system, in

which they examined different system designs to reach optimal solar to hydrogen (STH) efficiency.
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They tested multiple commercial PV modules and concluded that directly coupling the two systems

leads to optimal efficiency of 12.4% if the PV modules are specifically designed to have a maxi-

mum power voltage (Vmp) that matches the electrolyzer operating voltage. In other cases where

there is a mismatch between the PV modules output voltage and the electrolyzer operating volt-

age, incorporating a DC-DC converter in the circuit is beneficial to reach acceptable STH values

between 5.7 and 10.5% [9, 10]. Similar results were also highlighted by the work of Cabezas et al.

[11]. They demonstrated that for a directly coupled PV-electrolyzer system, optimal design con-

figurations correspond to cases where the PV modules maximum power point (MPP) matches the

electrolyzer operating voltage. They also demonstrated that using state-of-art electrolyzers coupled

with suitable design of PV modules can increase the system’s coupling efficiency. Sriramagiri et

al. [12] examined different coupling strategies for photovoltaic electrolyzer (PV-EC) systems to

evaluate the solar-to-fuel efficiency (SFE) under actual operating conditions. They developed a

model to evaluate the annual performance and applied it on two systems: a bench-scale PV-CO2

EC and a MW-scale commercial PV-H2O EC. The calculated SFE values under real-life operating

conditions were up to 32% lower relative to standard testing conditions, with enhanced perfor-

mance observed with the use of DC power optimizer compared to optimally matched and slightly

mismatched directly coupled systems.

A hybrid system consisting of PV modules and wind turbines (WT) to power an electrolyzer

is simulated in Khalilnejad et al. [13]. Achieving optimal design of WT and PV systems to

maximize hydrogen production, while minimizing excess energy generated was the primary focus.

The simulation was intended to support the operation of an off-grid electrolyzer load for a diurnal

period (24 h simulation time) in Miami city.

Aside from the promising usage of hydrogen in fuel cells for transportation applications, hydro-

gen can serve as a solar energy storage medium in stand-alone systems, providing backup power

in cases of diurnal weather and long-term seasonal variations [14]. Lagorse et al. [15] proposed

a stand-alone street lighting hybrid system consisting of PV cells, storage battery, and hydrogen-

powered fuel cells. The integration of fuel cells is essential in cases where the battery is unable

to provide necessary power due to long-term seasonal variations. For Geneva, Switzerland, the

optimal system sizing chosen to minimize the system cost, was able to power the street light all

year round.
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Hassan et al. [16] also investigated a similar hybrid energy system for grid-connected residential

applications. The system consists of PV modules as the primary source of energy, coupled with a

storage battery bank and a hydrogen storage system (electrolyzer, fuel cell, and hydrogen storage

tanks) to cover dynamic load scenarios. They proposed different operation modes of the system

based on the charging/discharging states of the battery and hydrogen storage systems. The hybrid

system was able to meet the dynamic load demands with excellent grid stability over 24 h period

in a typical summer day in Islamabad.

A techno-economic analysis of a grid connected hybrid energy system was presented in Singh

et al. [17]. The hybrid system consists of PV modules, fuel cell stack, electrolyzer, and hydrogen

storage tank, and is designed to meet the electrical load demands of a small community center

in India. A power management strategy was proposed to maximize the system’s efficiency and

reliability. The results demonstrated that the grid-connected hybrid system was able to provide

uninterrupted power supply and completely cover the energy demand of the community, with an

optimal LCE value of 0.104 $/kWh.

Rullo et al. [18] presented an energy management strategy (EMS) that uses finite state ma-

chine approach to control a stand-alone hybrid system. The system consists of PV modules, wind

turbines, battery bank, bioethanol reformer for hydrogen production, and a fuel cell system, and

is intended to cover a dynamic load demand of a standard residential building. The management

strategy was simulated and experimentally validated in a laboratory-scale station, and was able

to maximum autonomy time, which corresponds to the battery ability to cover full load demands

before reaching the minimum state of charge (SOC) level. The EMS was also able to accomplish

minimal recharge time, with minimal cycles of charging and discharging the battery.

Ozgirgin et al. [19] studied a hybrid system consisting of PV modules, storage batteries, proton

exchange membrane (PEM) electrolyzer, and PEM fuel cell. The hybrid system is intended to

cover electricity and hot water demand for a residential application of a single household in Ankara,

Turkey. The model considered seven cases of PV panel areas and used average global irradiance

data for each month to investigate the hybrid system performance for different seasons. They

concluded that the hybrid system is effective for powering stand-alone household applications in

Ankara.

Modeling, simulation, and optimization of a stand-alone PV-electrolyzer-fuel cell hybrid system
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to meet a residential community energy demand is presented in Ghenai et al. [20]. Two dispatch

control strategies were investigated: load following, in which the system’s main objective is to meet

the demand, and cycle charging, where the fuel cells operate at maximum capacity to meet the

demand and run the electrolyzer as well. The resulted optimum system configuration, which uses

the cycle charging control strategy, was able to meet the load demand with a negligible unmet

load percentage of 0.08%, low levelized cost of energy of 0.145 $/kWh, and a CO2 emission-free

electricity generation.

Tebibel et al. [21] presented a hydrogen management strategy to optimize hydrogen production

from methanol electrolyzer powered by an off-grid PV-battery system. The system is intended to

cover a hydrogen demand for two applications, each with a different demand profile. Measured

meteorological solar irradiance and ambient temperature data were acquired for Algiers city, and

the off-grid system was simulated for one year at two different PV tilt angles: horizontal and 36°

tilt. The tilted position achieved higher PV power production, and hence required less capacities

of the individual systems components: PV, electrolyzer, and hydrogen storage tanks.

Cabezas et al. [22] demonstrated that -with proper installation- it is possible to harvest a

good amount of solar energy in high latitude regions of Antarctica, which is approximately half the

amount harvested in a reference location in Argentina. In their study, two vertical PV modules

(facing NE and NW) were installed on a house wall in Antarctica, and the delivered power data were

collected for two years. Long-term hydrogen storage system (composed of an alkaline electrolyzer,

a PEM fuel cell stack, and storage reservoirs) was incorporated in the system to maintain demand

power delivery throughout the sharp seasonal decline in the harvested solar energy.

Integrating renewable power resources, especially wind and PV systems, with battery storage

systems has also been established to meet a certain demand load. Hongxing et al. [23] presented

an optimal design model for a hybrid PV-WT-Battery system to power a telecommunication relay

station on a remote island in China. The model objective was to minimize the annualized cost

of the system, while maximizing the system reliability using the weather data of the year 1989 in

Hong Kong city.

Baghaee et al. [24] investigated a hybrid wind-solar system with hydrogen energy storage

(consisting of an electrolyzer, hydrogen storage tank, and a fuel cell) with the goal of finding

the optimal size of the system components that minimizes the system’s cost and maximizes its
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reliability. Wind speed and global irradiance data were acquired for Ardebil province in Iran, and

the system was simulated over one year. The simulation yielded a Pareto optimal set for each of the

three cases studied; a hybrid system, only solar generation, and only wind generation. For future

work, the authors suggested investigating grid-connected renewable energy hybrid systems, since

the grid can cover the system power fluctuations economically better than energy storage systems.

Hosseinalizadeh et al. [25] simulated a hybrid system consisting of PV modules, wind turbines, a

battery bank, and a hydrogen energy storage system to minimize the total energy costs. The average

wind speed and solar irradiance values were used in the simulation for four different regions in Iran.

For every region investigated, the problem covered three scenarios: a hybrid PV-WT system, PV

only system, WT only system. The use of the hybrid system was proven the optimal scenario for

all four regions. The optimal results also proved that utilizing the battery bank as the main storage

and the fuel cells for backup purposes was economically favorable.

A sizing optimization problem intended to maximize profitability and minimize environmental

hazards is presented in Mukherjee et al. [26]. They proposed a renewable hydrogen-powered

microgrid system design to back up the grid and meet the power demand of a community in

Ontario, Canada. The system consisted of PV modules, wind turbines, electrolyzers, hydrogen

storage tanks, fuel cells, and fuel cells vehicles, which provide vehicle to grid services for backup

power generation. For their model, hourly wind and solar irradiance data were acquired for one

year. The microgrid system was required to provide at least 10% of the community energy demand

under normal operation, while being able to meet the community energy demand for a two-day

blackout period (off-grid operation). Their model returned an optimal solution for each of the

microgrid system components; however, the system did not achieve a positive net present value

at the end of its project life of 20 years due to the scale of the system, even after considering the

profits and savings earned by the services offered when implementing the microgrid model.

In this work, an integrated PV-electrolysis-battery system is presented with the goal of identi-

fying optimal system size. The PV modules provide the necessary power to run the electrolyzer,

while using the excess power to charge the battery during peak PV power production. The bat-

tery will subsequently provide the power necessary to ensure uninterrupted operation of the elec-

trolyzer during night. Diurnal and seasonal weather variations are also included and are used to

optimize individual system elements. The system is connected to the electric grid to ensure un-
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interrupted operation of the electrolyzer during seasonal weather variations. During times where

the power generated from the PV modules is insufficient to fully meet the electrolyzer and battery

charge/discharge load, power will be supplied by the grid. On the contrary, excess power will be

sold to the grid in cases where the power generated by the PV modules exceeds the integrated

system power requirements. A schematic diagram of the coupled system is presented in Fig. 1.

The simulation is implemented in Python environment, and is run for the calendar year 2017 in

College Park city, Maryland.

PV Array
DC bus

Battery Bank

DC/DC Converter/MPPT
=

=

DC/DC Converter
=

=

DC/DC Converter

Utility Grid

=
≈

Electrolyzer

DC/AC Converter

AC/DC Rectifier

+ _+

+ +
__

_

=
=

Fig. 1. A schematic diagram of the coupled system.

To achieve maximum design and operation sustainability, the coupled system is required to

meets net-zero grid energy throughout the whole year. Since the proposed system is designed for

commercial-scale applications (with hydrogen production rate in the range 5-120 Normal m3/h),

reaching a value of exactly zero is highly improbable. Instead, the coupled system can be assumed

to meet net-zero energy when the system meets a cut-off value of ±5% relative to the daily plant

power consumption. That is, the system’s net grid energy (NGE) evaluated at the end of the year

shall not exceed 5% of the electrolyzer power consumption in a day.

The analysis goal is to identify the optimal system configuration necessary to maximize the

hydrogen production rate, minimize the total annual cost of the system (ACS), minimize the

levelized cost of energy (LCE), while meeting an annual grid net-energy within ±5% relative to
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the daily plant power consumption.

Most published research uses meteorological data from nearby weather stations or specialized

websites and platforms to get the global solar irradiance, and hence evaluate the dynamic operation

and performance of the PV modules. However, these data sets may not be readily available for

any location on earth; hence its application worldwide might be limited. This work provides a

clear mathematical model to calculate the global irradiance falling on a PV module surface given

its orientation, at any location as a function of time of the day. This model has proven to be

effective in forecasting the energy generation of a solar-powered house in Colorado during the

10 day competition period in the 2017 US Department of Energy Solar Decathlon (SD) contest,

where team Maryland took second place overall and first among US teams. The ability of the

model to accurately forecast future energy generation was a key factor behind team Maryland

achieving nearly perfect net-zero electrical power performance. During the design, prototype, and

construction phases of the reACTHouse (UMD 2017 SD entry), the model was also validated

when applied and tested on the LEAFHouse (UMD 2007 SD entry, currently located in UMD

campus) to compare the simulation’s prediction of house performance to measured LEAFHouse

power generation data.

Unlike some research that uses a 24-hour period to simulate and analyze the hybrid system, or

assumes a fixed averaged value of global irradiance, this model uses hourly incremented calculations

to simulate the coupled system for one year; including both diurnal and seasonal weather variations.

The computational platform presented in this article to model integrated solar hydrogen systems

can be extended to more complex hybrid systems.

The rest of the paper is organized as follows. Detailed modeling of the integrated system

individual components is presented in section 2, and an economic model is then introduced in

section 2.5. The problem formulation is presented in section 2.6, and the coupled system model

algorithm is explained in section 2.7. Simulation results are presented and discussed in Section 3.

Finally, conclusions of this work are summarized in Section 4.
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2 Mathematical Model

2.1 Solar Irradiance Modeling

The solar constant Gsc (= 1366 W/m2) is the maximum direct solar irradiation reaching the

Earth’s surface if none of the radiation is absorbed or scattered by the atmosphere. The effect of

Earth’s atmosphere is a key factor to consider since a significant fraction of the solar irradiance is

either absorbed or scattered by molecules and particles in the atmosphere, leading to the definition

of two important irradiance components; direct (GD) and diffuse (GF ). Direct irradiance refers

to the direct sunbeams reaching Earth, while the diffuse component corresponds to the fraction of

the solar irradiance scattered by the atmosphere, but eventually reaching the Earth’s surface. The

global irradiance GG is then defined as the summation of the direct and diffuse components.

Equation (1) can be used to calculate the global irradiance as a function of location, time of

the day, and date [27].

GG(td, φ, θ) = [(0.11 + cos ζ)GD⊥ ]×H(cos ζ) (1)

with

GD⊥ = Gsc × 0.73AM0.678
(2)

AM =
0.89z

cos ζ
for z < 3 km (3)

cos ζ = −~ni · ~s (4)

~s = 0~x+ 1~y + 0~z (5)

~ni = nxi~x+ nyi~y + nzi~z (6)

nxi = cosλy sinφ sinθi + sinλy ( cosδ sinφ cosθi + sinδ cosφ) (7)

nyi = −sinλy sinφ sinθi + cosλy ( cosδ sinφ cosθi + sinδ cosφ) (8)

nzi = −sinδ sinφ cosθi + cosδ cosφ (9)

asti = 24 (i/nast) (10)

θi = 2π (nast − i) /nast − 2π (td/365) (11)

φ = 2π (90o − φoN) /360o (12)

Page 11 of 46 Sustainable Energy & Fuels



12

where GD⊥ is the direct irradiance reaching a surface that is aligned perpendicular to Sun’s rays,

AM is the effective air mass, ζ is the zenith angle, the angle made between a line segment extending

between the Earth and sun and local vertical, z is the site elevation in km, ~ni is the vector normal

to and pointing out of the PV module surface, ~s is the solar radiation vector directed along the

y-axis, λy = 2πtd/365 is an angle representing Earth’s mean orbit at td, td is the number of days

past the most recent winter solstice, φ is the latitude in degrees measured north of the equator,

θ is the longitude, δ is the Earth’s declination at td = 0 (equals to 23.44o), ast is the apparent

solar time (with ast = 12 at solar noon, and ast = 0, 24 at midnight), and H is the Heaviside

function and is used to prevent negative irradiance values on the night-side of the planet. Detailed

derivation of these equations is provided in [27].

When a PV module is tilted with an angle θtilt towards the South Pole, φtilt = φ+θtilt is used in

Equations (7), (8), (9), and (12) instead of φ to calculate ~ni,tilt and cos ζtilt. The global irradiance

can then be calculated from:

GG(td, φ, θ) = [H(cos ζtilt)GD⊥cos ζtilt + 0.11GD⊥ ]×H(cos ζ) (13)

The H(cos ζtilt) term is added to account for cases where the PV module is tilted away from

the Sun’s radiation during daylight (with cos ζtilt < 0 and cos ζ > 0), and hence only receives the

diffuse component of the irradiance.

2.1.1 Effect of Cloud Cover

The above model calculates the global irradiance falling on a PV module surface given its

orientation, at any location as a function of time of the day. However, the effect of cloud cover is

not yet addressed. For a completely cloudy day, it is reasonable to assume that only the diffuse

part of the irradiance constitutes the global solar irradiance, with 20% the intensity of the direct

normal irradiance [28]

Gcloudy = 0.2×G⊥D (14)

Since the clouds cover is typically represented as a fraction between 0 and 1, a simple weighted

average is assumed such that the irradiance value is equal to GG for sunny days (CloudsCover = 0),
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and Gcloudy for a completely cloudy day (CloudsCover = 1).

Gtotal = CloudsCover ×Gcloudy + (1− CloudsCover)×GG (15)

It should be noted that there are different and more complex models to estimate the cloudy days

irradiance, often requiring the incorporation of many metrological parameters, and the research is

still underway to optimize and enhance the accuracy of these models. Nevertheless, it has been

shown in the literature that the very simple cloudy sky irradiance models performed comparably

to the complex ones [29].

Hourly weather data for the 2017 year is acquired by executing an API request from the Dark

Sky API website [30]. Hourly cloud cover data then can be extracted from the weather data. Fig.

2(a) and Fig. 2(b) provide the cloud cover data for College Park, MD for the first week of January,

and the first week of August, respectively, compared to the total solar irradiance calculated Gtotal,

showing the inverse correlation between the two. Comparing the two weeks in Fig. 2 shows the

effect the time of the year has on the value of the total solar irradiance, with noticeable lower

irradiance values in winter, Fig. 2(a), compared to summer, Fig. 2(b). Hourly cloud cover data

and the total solar irradiance, Gtotal, for the entire year 2017 are provided in Fig. S1 of the

supplementary material. A list of the input parameters and variables used in the model is given in

Table S1 of the supplementary material.

It should be noted that, whenever available, minutely data provide a more accurate solar irra-

diance representation compared to hourly data, and hence, can reflect rapid real-life power fluctu-

ations due to rapid variations in solar irradiance occurring within the hour [31, 32]. However, for

extended period of time, e.g. one year, the difference in hourly and minutely irradiance simulations

can be trivial [32].

2.2 PV Module Characteristics

The PV module considered in this work is the SunPower SPR-X21-345 [33], which consists

of 96 solar cells connected in series. If each cell in the module performs identically, the module
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Fig. 2. Hourly cloud cover data from Dark Sky API for College Park, MD and the solar irradiance
Gtotal calculated at a module tilt angle of 35° for the first week of January (a) and the first week
of August (b).
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performance model can be written in terms of the diode equation

I = −IphX(t) + Io

[
exp

(
q
V/96− IRs

βkBT

)
− 1

]
+
V/96− IRs

Rsh
(16)

where X(t) is the dimensionless concentrating factor proportional to the global irradiance so that

X(t) = Gtotal(t)/(1000 W/m2). The diode ideality factor β ∈ [1, 2] approaches unity under ideal

performance conditions. The series Rs and shunt Rsh resistances approach 0 and positive infinity,

respectively, for an ideal PV cell. Io and Iph are the dark saturation and photo-currents, respectively.

An iterative non-linear procedure is used to fit the manufacturer module specifications at the

short circuit, open circuit, and maximum power points. The diode equation parameter values are

identified as a result of the fitting procedure and are shown in Fig. 3 and presented in Table 1.

These parameters are then substituted in the diode equation (16) to determine the I − V and

P − V characteristic curves at each point during the day according to the different value of the

concentration factor X(t).

Table 1. SunPower SPR-X21-345 module parameter fitting results on a per-cell basis.

Iph (A) Io (A) Rs (Ω) Rsh (Ω) β

6.39 6.28×10−12 6.70× 10−3 2.00× 103 1

PV systems are ideal power supplies for electrolyzers. This is mainly because the output voltage

of the PV modules can be controlled to relatively constant values as illumination levels change.

This is particularly valuable for fast transients, such as the sudden reduction of irradiance due

to a passing cloud. Furthermore, the use of a DC-DC converter and optimizer ensures that the

output power is at the maximum power point (Pmp, Vmp, Imp). In this analysis, the electrolyzer

is assumed to follows a constant-current operational mode, which requires a constant and steady

source of voltage. Hence, the mean value of the non-zero entries throughout the year (Vmp,mean) is

chosen as the operating voltage of the electrolyzer. Fig. S2 shows non-zero values of the Vmp (i.e.,

during daylight operation of the PV module) for the year, with the mean value Vmp,mean calculated

to be 55.6 V.
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Fig. 3. SunPower SPR-X21-345 Module parameter fitting results (the negative sign corresponds to
power produced by the PV module). The maximum power point is denoted in red.

2.3 Electrolyzer Design

A bipolar alkaline water electrolysis unit is considered in this work. In bipolar designs, the

active electrodes (positive and negative) are connected to different sides of a conducting metal

plate (or a bipole), and they are geometrically and electrically connected in series [8, 34]. A bipolar

stack consisting of N cells wired in series typically operates at higher voltages and lower currents,

hence, multiple stacks M connected in parallel are required for large-scale applications.

Conventional alkaline electrolyzers typically operate at pressures of 1-30 bar and temperatures

between 70 to 100° C [34]. Most commercial alkaline electrolyzers operate at 80° C [14, 34, 35].

Water is nominally split at current densities between 100 to 400 mA/cm2 in an aqueous KOH

electrolyte with concentrations between 25-35 wt% [36]. Higher current densities are avoided as

they will increase internal ohmic losses due to the electrolyte [8, 36].

The diaphragm choice has critical implications for the electrolyzer design and operation. The

diaphragm must have high ionic conductivity, while being stable in strong alkaline solutions and

high temperatures. For this work, Zirfon Perl [37], a high quality separator membrane for alkaline

water electrolysis, is chosen. This membrane is durable in strong alkaline solutions (up to 6 M

KOH), and up to 110° C. It has a high number of OH− groups at alkaline pH and low ionic

resistance (0.3 Ωcm2 at 30° C in 30 wt% KOH [37]), allowing higher current values to be reached.
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2.3.1 Electrolysis Cell Characteristics

In previous work [38], the mechanism and kinetics of both OER and HER were investigated

on nickel-iron layered double hydroxide (NiFe LDH) films deposited on Ni foam substrates. The

results and analysis of linear sweep voltammetry and electrochemical impedance spectroscopy were

combined to reveal valuable insight on the reaction kinetics and mechanism occurring at each

electrode. The results identified from the anode and the cathode were then combined to fit the

electrochemical cell experimental data.

Now that the electrolyzer design is set, the electrolysis cell characteristics at the nominal set

of design parameters can be investigated. It is well known that most reaction rate constants of

solution reactions vary with temperature according to Arrhenius law. The electrolyzer is assumed

to operate at 80° C; hence, Arrhenius law (ln k ∝ −1/T ) can be used to recalculate the values of

the partial standard reaction rate constants reported in [38], that were originally evaluated at room

temperature.

In addition to its effect on the reaction kinetics, temperature has a crucial influence on the

electrolyte resistivity: higher temperatures promote higher ionic conductivity in the electrolyte.

A 25 wt% KOH electrolyte at 80° C has an ionic conductivity of 1.302 S/cm [39]. With a 5 mm

electrolyte path and 0.5 m2 electrode area, the electrolyte total ohmic resistance can be calculated

as the summation of the solution and membrane resistances, and is equal to 1.368× 10−4 Ω.

The electrolysis cell I − V characteristics can be expressed using Equation (17)

Vcell = 1.23 + ηa + ηc + Icell ×RΩ (17)

where ηa and ηc are the anode and cathode overpotentials, respectively, and RΩ is the cell ohmic

resistance. The resulting I − V curve is shown in Fig. 4.

2.3.2 Power of the Electrolyzer

For a fixed N cells wired in series, and M stacks connected in parallel, the total power of the

electrolyzer at any time is equal to:

Pe = M ×N × Vcell × Icell (18)
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Fig. 4. Current-voltage characteristics of the electrolysis cell at 80 C. The dash lines define the
electrolysis cell operating range, approximately between 100-400 mA/cm2.

The total hydrogen production rate (mol/s) can be calculated from:

nH2 =
M ×N × Icell

2× F
(19)

Gas flow rates are typically reported as normal cubic meters per hour (Nm3/h). The volumetric

production rate can be calculated using [34]:

VH2 = nH2 × νstd × 3600 (20)

where νstd is the volume of an ideal gas at standard conditions.

2.4 Battery Design

A battery model is proposed in (21), which is simple yet capable of accurately predicting the

stored battery energy at any point in time. The electrolyzer unit is assumed to be operating at

constant current mode, therefore, for a fixed system size, the battery state of charge (SOC) is solely

dependent on the solar irradiance and weather conditions. The battery, therefore, will only charge

when the PV modules are producing excess power and is required to discharge when the PV power
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is insufficient to operate the electrolyzer system. Considering a lead acid battery with a round-trip

efficiency ηb of 85% [40], the battery operation can be expressed from an energy standpoint:

dEb

dt
=


ηb (PPV (t)− Pe(t)) , PPV (t) ≥ Pe(t)

(PPV (t)− Pe(t)) , PPV (t) < Pe(t)

(21)

with

SOC(t) =
Eb(t)

Cap
× 100 (22)

where Eb is the energy stored in the battery, Cap is the battery capacity, and PPV and Pe are

the PV power produced, and electrolyzer power consumed, respectively. The first case in (21)

corresponds to a charging state, and the second case is a discharging state. To extend the life of a

lead acid battery, it should not be completely depleted. Instead, a minimum limit on the battery

energy should be applied. The battery depth of discharge (DoD) is defined as the percentage of

the discharged energy of the battery to the total battery capacity. In this model, a DoD of 70% is

applied as the minimum limit constraint on the battery [41].

2.5 Economic Model

2.5.1 System Cost

Our economic model is derived from the annualized cost of the system (ACS), which mainly

consists of the annualized costs of PV (Ca,pv), electrolyzer (Ca,e), and battery (Ca,bat). The cost of

grid electricity (Ca,grid) also is included in the analysis. The costs of electrical converters are not

included in this analysis as these costs represent only a small fraction (<1%) of the total systems

cost [15].The ACS can be calculated using:

ACS = Ca,pv + Ca,e + Ca,bat + Ca,grid (23)

For each component in the coupled system, the annualized cost is the summation of the capital

cost (CaCapital), replacement cost (CaRep), and the operation and maintenance cost (CaO&M). Hence,
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the total annualized cost of the jth component can be written as:

Ca,j = CaCapital,j + CaO&M,j + CaRep,j (24)

The annualized capital cost for the PV modules and the electrolyzer can be calculated using

[23]

CCapital,j = Uj × Pj (25)

CRFj =
i(1 + i)nj

(1 + i)nj − 1
(26)

CaCapital,j = CCapital,j × CRFj (27)

where the subscript j is used to denote the component (PV, electrolyzer). CCapital,j is the capital

investment and installed cost ($), Uj is the unit capital cost ($/kW), Pj is the power produced or

consumed (kW), CREj is the capital recovery factor (necessary to calculate the annual worth from

the present value), i is the real discount rate, and nj is the lifetime of the jth component. Ppv is

the nominal power produced by each module (=0.345 kW [33]) multiplied by the number of PV

modules (Mpv).

For the battery capital cost, Pj in Equation (28) is replaced with the battery capacity (Cap),

and the unit capital cost Ubat is given in $/kWh:

CCapital,bat = Ubat × Cap (28)

CRFbat =
i(1 + i)nbat

(1 + i)nbat − 1
(29)

CaCapital,bat = CCapital,bat × CRFbat (30)

The annualized O&M costs for the PV modules and the electrolyzer can be determined from:

CaO&M,j = UO&M,j × Pj (31)
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The battery annualized O&M cost is:

CaO&M,bat = UO&M,bat × Cap (32)

In this work, the project lifetime is assumed to be equal to the PV system lifetime of 30 years

[42], hence, no replacement cost is considered for the PV system. Alkaline electrolysis plants have

a lifetime up to 30-50 years; however, stack replacements are often required before reaching this

lifetime [43]. Most state-of-art commercial alkaline electrolyzers have a stack lifetime between

78,840 and 96,000 hr, equivalent to 9.2-11.2 years (with 8,585 operational hour per year) [44, 45].

Considering a stack lifetime of 10 years, replacements are required twice during the lifetime of the

project. With a stack replacement cost of 50% of the capital installed cost [44], the annualized

replacement cost is calculated using:

CRep,e = RFRep,e × CCapital,e (33)

CaRep,e = CRFe ×
(
CRep,e(1 + i)−10 + CRep,e(1 + i)−20

)
(34)

where RF is the replacement cost factor. In Equation (34), this factor (1 + i)−n is used to convert

the future payments at year n (i.e. replacement cost) to its present worth, before multiplying it by

CRF to convert it to its annual worth value (in $/yr). Lead-acid batteries typically have a lifetime

of 15 years [40], after which the battery bank is replaced. It should be noted that in practice, the

battery lifetime can be less as it depends on the battery operating conditions and specifications

[46]. Different models are available in the literature that predicts the battery lifetime [46], however;

this requires detailed battery operational condition and specifications and is out of the scope of

this work. With an assumed battery lifetime of 15 years and a replacement factor (RF ) of 100%,

the annualized replacement cost can be calculated using Equation (36). The economic parameters

used in this analysis are given in Table 2. The costs of electrical converters are not included in this

analysis as these costs represent only a small fraction of the total system’s cost [15].

CRep,bat = RFRep,bat × CCapital,bat (35)

CaRep,bat = CRFbat × CRep,bat(1 + i)−15 (36)
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Table 2. The economic parameters used in this analysis. A real discount rate i of 6.9% is assumed
in this analysis for 2017 [42].

PV Electrolyzer Battery

Uj 1850 ($/kW) [42] 1300 ($/kW) [43] 500 ($/kWh) [40]

UO&M,j (/year) 21 ($/kW) [42] 2.5% ×Ue ($/kW) [43] 3% ×Ubat ($/kWh) [23, 41]

nj (year) 30 [42] 10 [44] 15 [40]

The U.S. Energy Information Administration reported the cost of electricity for commercial

applications in the state of Maryland of 0.1075 $/kWh [47]. Hence, to calculate the grid annualized

cost, the cost of electricity is multiplied by the net-energy consumption for the year:

Ca,grid = 0.1075×Net Energy (37)

Ca,grid can either take a positive or a negative value, depending on the sign of the yearly net-

energy balance for each configuration considered in the optimization study. A positive sign of the

net grid energy is assigned when excess energy is sold to the grid, and negative for energy supplied

by the grid.

2.5.2 Levelized Cost of Energy

The levelized cost of energy (LCE) is a concept frequently discussed when comparing alternative

energy-producing systems, particularly with renewables such as solar or wind. It also is used as

a benchmark to evaluate different system sizing combinations and to determine the optimal size.

LCE can be defined as the cost associated with producing 1 kWh of energy. It can be calculated

by dividing the total annualized costs of the hybrid system ($/yr) by the total energy produced by

the PV system (kWh/yr) [48]:

LCE =
Ca,pv + Ca,bat

Ean
(38)
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2.6 Problem Formulation

In this work, we seek to model, simulate, and optimize the coupled system with the goal of

maximizing hydrogen production rate while minimizing the total cost associated with the system

size. This implicitly requires finding the right sizing combination of the system’s components

necessary to ensure high hydrogen production rate, while minimizing excess power production and

system physical dimensions. To promote sustainability, the optimal solution will be required to

have an annual net-grid energy balance that falls within ±5% relative to the daily plant power

consumption. In addition to minimizing the combined system cost, minimizing the LCE also is

included to ensure the optimality of the solution.

The Pareto Frontier analysis is used to generate the optimal solutions of the multi-objective

optimization problem. The Pareto-Frontier is a set of non-dominated solutions and is typically gen-

erated for multi-objective optimization problems, where finding a single best solution is improbable.

This concept, formulated by Vilfredo Pareto, is one of the earliest in multi-objective optimization

field [24, 49]. Its simplicity and effectiveness in finding the solution space is one of its main ad-

vantages. Due to the complexity and high-depth of the mathematical model used to describe the

coupled system, a simple and effective Pareto-Frontier analysis was a legitimate approach in this

study.

The optimization variables considered are the number of PV modules connected in parallel

(Mpv), number of electrolysis cells in each stack (N), number of stacks in the electrolyzer unit (M),

and battery capacity (Cap).

To lower system losses associated with the cell ohmic resistance, conventional alkaline electrolyz-

ers typically operate at current densities between 100-400 mA/cm2 [8, 36]. This operating range

defines upper and lower bounds on the number of cells N connected in series in an electrolyzer

stack. At this operating range of current densities, the design voltage for each cell should be kept

between 1.65-1.78 V, as seen in Fig. 4. Hence, for the coupled system sizing optimization purposes,

a feasible set of N values is defined as:

Vmp,mean

1.78
≤ N ≤ Vmp,mean

1.65
(39)

This results in a feasible set of N values of 32, 33, and 34 cells connected in series. The design
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variables values, given in Table 3, define a set of 2,364,120 possible configurations to consider in

the optimization problem. The chosen Mpv and Cap ranges are intended to cover the maximum

and minimum electrolyzer power demand at the ranges of N and M presented in Table 3.

Table 3. Range and step size of decision variables considered in the optimization problem

N M Mpv Cap (kWh)

Minimum value 32 1 100 250

Maximum value 34 10 10000 20000

Step size 1 1 50 50

2.7 Coupled System Model Algorithm

After acquiring the cloud cover data for a specific year, the irradiance model is run to evaluate

the concentration factor X, which can be used in the PV diode equation to calculate hourly values

of Vmp, Imp, and Pmp for the entire year. The search space is initialized based on the variables

given in Table 3. Vmp,mean is used along with an input value of N to evaluate the electrolysis

cell operating voltage (Vcell), which determines the operating current (Icell) based on Fig. 4. The

electrolyzer total operating power (Pe) and the hydrogen production rate (VH2) are then evaluated

using Equations (18) and (20).

For each point in the search space, the algorithm proceeds as a loop with incremental hourly

time-steps for the entire year. At each time, the battery operating state and energy level are

evaluated using (21), with an initial SOC value of 50% at t=0.

Battery model initial conditions are defined by setting the maximum and minimum operating

limits for the investigated size (Ebat,max = Cap, Ebat,min = (1−DoD)×Cap). For each time step,

if Ppv ≥ Pe, then the battery is charging, and the charge level at the next point in time is calculated

using (21). Before moving to the next time step, we check if the new battery charge is greater than

the battery capacity, if so, the excess power will be sold to the grid, assuming a converter efficiency

ηcov of 90%. If Ppv < Pe, the battery is in discharge mode, and the new charge level at the next

time step is calculated accordingly. The next charge level is checked against the minimum charge

constraint to ensure the battery is not depleted beyond the 70% DoD assigned; if this is the case,

power must be supplied by the grid (with a 90% converter efficiency). The net grid energy NGE is
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evaluated at the end of the year, and the annual relative net grid energy RNGE is then calculated

using

RNGE = 100× NGE

24× Pe
(40)

The cost analysis then is performed to determine the total annualized system cost (ACS) and

the levelized cost of energy LCE associated with each size. Fig. 5 presents a flowchart of the

algorithm implemented for each sizing combination considered in the optimization process.

Start

Initialize Model:
𝑁,𝑀,𝑀$%, 𝐶𝑎𝑝

𝐸*,+,- = (1 −𝐷𝑜𝐷)×𝐶𝑎𝑝

Calculate:
𝐼7899, 𝑉7899,𝑃8, 𝑉<=

𝑃$% 𝑡 , 𝑡	 = 0 − 8760

Initialize Simulation:
𝑆𝑂𝐶 0 = 50%

𝐸* 0 = 𝑆𝑂𝐶(0)×𝐶𝑎𝑝
𝐸H899(0), 𝐸*IJ(0), 𝑁𝐺𝐸(0) = 0

Start Simulation
𝑡	 = 0 − 8760

𝑃$%(𝑡) ≥ 𝑃8
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Fig. 5. Flowchart of the algorithm used for each sizing combination considered in the optimization
problem.
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For each sizing combination investigated, a constraint on the battery capacity is applied, in

which the capacity should be able to provide continuous operation of the electrolyzer for at least

12 continuous hours when fully charged. This is to ensure the feasibility of the solution based on

our analysis goal. Minimizing the system cost might force the algorithm to choose a size where

the battery capacity is too small compared to the plant hydrogen production capacity. These cases

correspond to situations where the battery is only able to provide continuous operation for a few

hours, i.e., only one or two hours of operation. This case will require purchasing enormous amounts

of energy from the grid, which can off-set limited battery capacity on days with high irradiance. To

illustrate, the small battery size compared to the power generated by the PV modules will allow it

to fully charge rapidly, and the excess energy will be sold back to the grid, resulting in a net-zero

grid energy. However, we aim to avoid these scenarios since they contrast the objective of this work,

which is to only rely on the grid power in rare cases where the weather variations have substantial

influence on the output power of the PV modules.

The optimization problem’s search space was refined as the simulation progresses. Because

the main target is to achieve an annual net grid energy balance (RNGE) within ±5% relative

to the daily plant power consumption, redundant size combinations were eliminated during the

simulation process. A cut-off value on the RNGE of ±100% was applied to eliminate redundant

configurations and to reduce simulation time. For example, if a specific size combination (N , M ,

Mpv, Cap) resulted in a high negative value of RNGE (RNGE < −100%), the electrolyzer designs

with greater power consumption (higher values of M) are ignored for this combination. In other

cases where the simulation of a specific size combination demonstrated a high positive net-grid

energy (RNGE > 100%), higher values of Mpv are ignored for this combination . In addition, for

infeasible designs where the battery capacity does not meet the minimum requirement to power

the electrolyzer for 12 continuous hours, lower values of capacities are considered redundant, and

hence, can be ignored. With this, only 6.3% feasible size combinations were simulated among the

2,364,120 set.

2.8 Dimensionless Performance Indicators

To further characterize and evaluate the system’s performance, the following performance indi-

cators are used:
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• The solar to hydrogen (STH) conversion efficiency is one of the most important factors in

evaluating the performance of solar-hydrogen production systems. STH can be calculated

using [9]:

STH =
N × Ie(mA)× 1.23V

APVt(m
2)× Irradiance(W/m2)

(41)

Ie = M × Icell (42)

APVt = MPV ×APV (43)

where Ie is the electrolyzer current, Icell is the electrolysis cell current (provided in Fig. 4),

APVt is the total area of the PV modules used, APV is the area of a single PV module (1.63

m2 for SunPower SPR-X21-345 [33]). The annual STH value is then calculated as the average

of the hourly STH values [12].

• The satisfied load fraction (SLF ) is the ratio of the energy generated by the system sent to

the load, relative to the required energy of the load [50, 51]. SLF can be computed using

[50, 51]:

SLF =
Etl

Eect
=
Epv,tl + Ebat,tl

Eect
(44)

where Eect is the annual energy required by the electrolyzer, Etl is the annual energy sent to

the load (electrolyzer), Epv,tl is the annual energy produced by the PV system that is sent to

the load, Ebat,tl is the annual energy supplied by the battery to the load.

• The utilization factor (UF ) of the energy produced is the ratio of the energy produced by

the PV-Battery system that is sent to the load relative to the annual energy produced by the

system [50, 51]. The UF is given as [50, 51]:

UF =
Etl

Ean
=
Epv,tl + Ebat,tl

Ean
(45)

where Ean is the annual energy generated by the PV modules during the entire year.

• The grid energy interaction factor (GEIF ) is the sum of the energy sold to the grid (Etg)

and purchased from the grid (Efg) relative to the required energy of the load (Eect) [50, 51].
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It provides a measure of the system’s interaction with the grid. GEIF is calculated from

[50, 51]:

GEIF =
|Etg|+ |Efg|

Eect
(46)

3 Simulation Results

3.1 Optimal System Size

The simulation results yielded 170 sizing combinations with annual net grid energy (RNGE)

within ±5% relative to daily electrolyzer power consumption. Among these solutions, 10 were

chosen as the Pareto-Frontier for the multi-objective optimization problem and are shown in Fig.

6. Each point in Fig. 6 corresponds to a specific size and is labeled to denote the system compo-

nents’ size combination. The 10 Pareto points are reported in Table 4. The annual dimensionless

performance indicators evaluated for the optimal Pareto points are also listed in Table 4.
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Fig. 6. Hydrogen production rate and total annual system cost for the 170 configurations with a
yearly relative net grid energy within ±5% relative to daily power consumption, showing the 10
Pareto-Frontier points. The numbered points are the Pareto optimal solution and are listed in
Table 4.
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The solar to hydrogen (STH) efficiency of the optimum Pareto set ranges from 7 to 7.5% as

seen in Table 4. It can be noticed from Table 4 that the optimal points with the same number

of electrolysis cells connected in series (N) have similar STH. This is expected because when

M is increased, Mpv and Cap must also increase by approximately the same factor to ensure the

optimality of the new size, and hence STH (given in Equation 41) remains constant. Similar

conclusion is also discussed in section 3.3.

Looking at Table 4, the maximum SLF value is equal to 0.775. This value indicates that the

PV-Battery system is able to meet 77.5% of the annual electrolyzer energy requirement, and the

balance is provided by the grid. An SLF value of 1 indicates that all the annual energy requirements

of the electrolyzer are satisfied by the PV-Battery system, which supports off-grid operation of the

system. The maximum UF among the optimal Pareto set was 0.698, indicating that 69.8% of

the annual renewable energy produced in the PV system is being utilized to meet the electrolyzer

energy requirements, and the rest is being stored in the battery at the end of the simulation or

sold to the grid. The GEIF of the Pareto points ranged between 0.418 and 0.595. Note that this

factor indicates both interactions: energy sold and energy purchased to and from the grid. For

optimal energy utilization in off-grid operations, it is recommended to maximize SLF and UF (to

approach 1), and minimize the GEIF (to approach 0). This can be achieved by increasing the

system storage capacity (i.e. battery capacity). This will reduce the dependency of the system on

the grid and ensure that power is only withdrawn from the grid at sever cases, which will take the

system a step closer to off-grid operations.

Fig. 6 reveals a clear trade-off between the two conflicting objectives: maximizing the hydrogen

production rate requires higher system cost. This result is expected since higher plant capacity

requires more energy input, hence, higher system physical dimensions. Because this is a mixed-

integer optimization problem in which some of the decision variables can only take integer values,

the Pareto Front plotted in Fig. 6 is not smooth. A refined smoother line can be obtained as the

step size of the decision variables approaches zero. However, because of the non-linear relation

between Icell and Vcell and their dependency on N , a completely smooth or straight line is highly

improbable.

Fig. 7 shows that higher hydrogen production rates yield lower LCE. Since increasing the

hydrogen production rate requires higher input energy (Ean), LCE value will decrease according
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Fig. 7. LCE and Hydrogen production rate for the configurations with an annual net grid energy
within ±5% relative to daily power consumption. The insert shows a closer look on the Pareto
Front. The numbered points are the Pareto optimal set and are listed in Table 4.

to Equation (38). It should be noted that the increase in (Ean) exceeds the observable increase in the

PV and battery costs, resulting in a decline in the LCE as the system’s physical dimensions increase.

However, at high hydrogen production capacities, the increase in required battery capacity leads to

higher system costs, which can exceed the increase in the annual energy produced throughout the

year. Supporting evidence for this conclusion is provided by the slight increase in the LCE value

in Fig. 7 between points 77, 163, 82, and 87. These points are the optimal solution for this graph

as they maximize VH2 while minimizing LCE, and they are already a subset of the Pareto Front

reported in Table 4. The trade-off between the ACS and LCE results in the Pareto front shown

in Fig. 8, which is a subset of the Pareto set reported in Table 4. This implies that optimizing the

system’s cost and hydrogen production rate implicitly ensures the LCE is also minimized.

3.2 Optimal Sizing and Relative Net-Grid Energy

Fig. 9, Fig. S3, and Fig. S4 show the spread of the optimal solutions, plotted as red circles,

with respect to the RNGE. Since the electricity cost is less expensive, one would expect that

optimal solutions minimizing the cost are always associated with negative values of RNGE close
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Fig. 8. Annual system cost and LCE for the configurations with a yearly net grid energy within
±5% relative to daily power consumption. The insert shows a closer look on the Pareto Front. The
numbered points are the Pareto optimal set and are listed in Table 4.

to the cut-off value of −5%. However, Fig. 9 reveals the independency of the Pareto optimal set

costs on the RNGE. That is, the optimal Pareto points are well spread over the RNGE domain

of ±5%. This assures the effectiveness of the analysis in finding the optimal system size.

The spread of the solution set can be attributed to the minimum constraint forced on the battery

capacity, requiring it to power the electrolyzer for at least 12 continuous hours. This ensures that

the system does not compensate the battery capacity and withdraws enormous amounts of energy

from the grid to minimize the total cost. Another reason for the solution spread over the RNGE

domain of ±5% is the trade-off between the Mpv and Cap. To keep the system’s cost at a minimal,

a slight increase in Mpv must be accompanied by a slight decrease in Cap, which results in shifting

the optimal point from a negative RNGE value to a positive one.

3.3 Pareto Front Set as a Design Guide

Detailed examination of the Pareto Front set presented in Table 4 reveals the possibility of

scaling the Pareto-Front according to any required plant capacity. To elaborate, if the required

hydrogen production capacity of a plant is a double of any given point in the Pareto Front, it follows
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Fig. 9. Annual cost and the relative net grid energy, showing the 10 Pareto-Frontier points in red.

that Mpv, M , and Cap values are doubled as well to conserve the optimality of the solution. The

new configuration will yield an optimal point with LCE and RNGE values similar to the original

Pareto point, and a doubled ACS value. This conclusion cannot be generalized to multiples of

N (i.e. the value of N should be kept fixed), since the electrolysis cell current-voltage relation

is nonlinear, and so would not result in an optimal design. Additionally, for safety requirements

(mainly to prevent the current from reaching excessive values), the value of N must be specified

based on the PV module output voltage.

To verify this conclusion, a new population is reproduced from each point in the original Pareto

set in Table 4, using multipliers in the range 0.04 to 3.4. This range was specifically chosen to

generate system sizing combinations with hydrogen production rates within the commercial scale

of 5-120 Normal m3/h. Due to the nature of this problem, only integer values of the newly generated

design variables are accepted.

Fig. 10 shows the result of simulating the newly generated population. It should be noted that

all points considered are proved to be optimal and constitute a refined version of the Pareto Front.

It can be noticed from Fig. 10 that some points in the original Pareto, such as points 137, 82,

and 87, were slightly dominated by newly generated designs. This is expected since, as previously
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mentioned in section 3.1, the step size of decision variables considered in the optimization problem

limits the resulted Pareto-Front. To illustrate, point 137 in Table 4 was dominated by a newly

generated design with similar N and M of 33 and 8, respectively, but with Cap = 4120 kWh and

Mpv = 5320.
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Fig. 10. Hydrogen production rate and the total annual system cost, showing the original 10
Pareto-Frontier points in red, and the refined Pareto Front in green. The numbered points are the
original Pareto optimal set and are listed in Table 4.

It can be concluded from this case study, represented in Fig. 10, that the resulted set is

guaranteed to be within the Pareto, and perform similar, if not better, than the original design it

was re-produced from. This conclusion is significant because it enables the design of arbitrary plant

capacities by multiplying a Pareto optimal point by a factor, while guaranteeing the new point still

lies within the Pareto Front.

Typically, a plant design process begins by specifying a target hydrogen production capacity

followed by a detailed economic and technical analysis. Hence, Table 4 can be used as a design

guide, since it provides a range of possible plant capacities and the associated optimal size.

3.4 Sensitivity Analysis

In the following, the effect of each decision variable on the ACS, VH2 , LCE, and RNGE is

discussed, while keeping other variables fixed.
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3.4.1 Battery Capacity

Obviously, increasing the battery capacity for a fixed system’s size will increase the ACS. The

LCE will increase as well because increasing the capacity only increases the numerator in Equation

(38). However, VH2 will not be influenced as it only depends on the electrolyzer design variables

N , M .

The influence of battery capacity on the RNGE depends on the system design elements that

remain fixed. That is, the influence mainly depends on the system energy requirements and energy

supplied by the PV modules. To illustrate, if the energy generated by PV modules is insufficient

(relatively low Mpv values), then the RNGE increases as Cap increases, as seen in Fig. S5(a) and

Fig. S5(b). This is because higher Cap values will be associated with higher initial battery energy

at the start of the simulation (since SOCi=50%). Hence, less energy will be supplied by the grid

throughout the year, causing the RNGE to reach higher values. This also is confirmed by the fact

that designs with higher Cap maintain higher SOC values throughout the year, requiring less grid

energy.

For fixed sizes with relatively high energy production, the RNGE behavior will be different,

as shown in Fig. S5(c) and Fig. S5(d). As the Cap increases, the initial battery energy increases,

and the SOC will be maintained at higher values throughout the simulation. Hence, the system

will tend to sell energy to the grid rather than to acquire. The RNGE behavior will then reach a

maximum before it starts decreasing. As the Cap excessively increases, it will be more challenging

to fully charge the battery, and less energy will be sold, as energy is only sold to the grid when the

battery is fully charged.

In addition, as the battery capacity increases, both SLF and UF increase before reaching

a plateau, which is expected as the numerator in Equations (44) and (45) increases. On the

contrary, the GEIF decreases as Cap increases, since having higher storage capacities will reduce

the interaction with the grid. If the battery capacity further increases, it will no longer limit the

system’s performance and the performance will depend on the other design variables.

3.4.2 Number of PV modules

For a fixed size, the LCE will decrease exponentially as Mpv increases. This can be supported

by examining Equation (38), where both Ca,pv and Ean increase linearly with increasing Mpv. The
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RNGE will increase as a result of increasing Mpv, as more energy will be produced, and hence, for

a fixed system size, more energy will be sold to the grid and less energy is purchased from the grid.

Similar to Cap, Mpv does not affect the hydrogen production rate, as it is assumed to be solely

dependent on the electrolyzer design.

For the system annualized cost, Fig. S6 shows an increasing trend of the cost with increasing

Mpv, hitting a minimum at lower Mpv values. At small Mpv values, the system is incapable of

generating sufficient power for the electrolyzer, and an enormous amount of energy must be supplied

by the grid, causing high total system cost. As Mpv slightly increases, the ability to meet the

system’s energy requirements increases. At this point, the increase in the PV system cost is less

than the decrease in the cost of electricity supplied by the grid, leading to a reduced overall system

cost. The curve reaches a minimum before the additional PV cost added to the system off-sets the

savings in electricity costs, and as a result, the total cost starts rising. This behavior is independent

of the system design kept fixed (i.e., similar behavior is noticed for all fixed values of N , M , and

Cap).

With the increase in Mpv value, an exponential increase in SLF is noticed. The UF will

experience an increase, before reaching a maximum, followed by a decrease in its value. Looking

at Equation (45), as Mpv increases, both Epv,tl and Ean increase, with an overall increasing trend

in UF value. It will reach a maximum before the increase in Ean exceeds the increase in Epv,tl,

reducing the overall value of UF . The behavior is reversed for the GEIF . Adding more PV

modules to the system will increase the energy stored in the battery, which will reduce the amount

of energy purchased from the grid, causing a reduction in GEIF . As Mpv further increases, the

battery SOC will be maintained at high values and more energy will be sold to the grid, which will

eventually cause GEIF to increase.

3.4.3 Electrolyzer Cells and Stacks

Looking at Equation (38), the electrolyzer design variables N and M have no direct influence

on the LCE. However, this conclusion is for a fixed system size, and should not be confused by

the relation between VH2 and LCE in Fig. 7, where the entire system size combination is different

for each point in the plot.

As the number of stacks M increases, both VH2 and ACS increase linearly. Nevertheless, the
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RNGE decreases exponentially. This exponential decrease is due to the linear increase in both

NGE and Pe in Equation (40).

For an increasing number of cells N , the behavior is reversed. Increasing N will reduce Vcell,

and consequently, Icell will reduce according to Fig. 4. Pe and VH2 will be more influenced by the

decrease in Icell and Vcell, rather than the slight increase in N values (from N=32 to 33 or 34). As

less Pe is needed for higher N values, the RNGE will increase and ACS will decrease.

3.5 Performance of Optimal Design

For each point in the Pareto Front, its performance throughout the year can be investigated.

Point 77 in Table 4 is taken as an example in this section. Fig. 11 combines the net-grid energy

and the coupled system operating conditions (Pe, Ppv, and Eb) as a function of time for two weeks

of the year: the first week of January, Fig. 11(a), and the last week in July, Fig. 11(b). To get a

visualization of the performance for the entire year, Fig. S7 provides the simulation results for the

chosen optimal point (i.e. point 77 in Table 4).

Examining Fig. 11 reveals that the battery charges in cases where the PV power is in excess

and discharges when PV power is insufficient to operate the electrolyzer. Additionally, energy is

sold to the grid at fully charged states (with a noticeable increase in the net-grid energy curve)

and is acquired from the grid when the battery reaches its DoD (associated with a decrease in the

net-grid energy curve). Interestingly, the net-grid energy is following a decreasing-trend in the first

week of January, Fig. 11(a), compared to the first week of August, Fig. 11(a), where it increases

due to selling excess PV power produced. This is also reflected in Fig. S7, where the net-grid

energy is decreasing at the beginning of the year (winter season), then slightly increases (between

the AST hours of 1500 to 4000, corresponding to the spring season), followed by a sharp increase

in the summer season months, and another decrease (corresponding to the fall and winter seasons)

to meet a net-zero energy target at the end of the year. This proves that simulating the coupled

system for an extended period of time, e.g. one year, reveals important information and enables

enhanced system sizing that can respond to the plant requirements even during seasonal weather

variations.
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Fig. 11. Simulation results for point 77 in Table 4 for the first week of January (a), and the first
week of August (b).
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4 Conclusions

In this work, a coupled PV-electrolysis-battery system was studied with the goal of determining

optimal system size, by implementing a Pareto Front analysis approach. This work presents a

mathematical model to calculate the global irradiance falling on a PV module surface given its

orientation, location, and time of the day. The model takes into account the diurnal and seasonal

weather variations in College Park, MD for the calendar year 2017. The primary aim of the analysis

was to identify the system design characteristics (N , M , Mpv, and Cap) that maximizes hydrogen

production rate, minimizes the system’s annualized cost and the levelized cost of energy, while

maintaining an annual net grid energy within ±5% relative to daily electrolyzer power consumption.

The simulation results yielded 170 sizing combinations with a RNGE within ±5%, 10 of which

were identified as the Pareto Front for this optimization problem. The identified Pareto Front can

be used as a design guide, allowing the design of arbitrary plant capacity by scaling a Pareto optimal

point, while guaranteeing the new point is optimal as well. The optimal Pareto set demonstrated

STH values in the range 7-7.5%, SLF within 0.688-0.775, UF within 0.617-0.698, GEIF within

0.418-0.595, and LCE values close to 0.2 $/kWh, with hydrogen production capacities between

36-122 Nm3/h. The influence of the design variables on the objective functions and performance

indicators was investigated and is presented in this work. To support off-grid operations, it is

recommended to maximize the SLF and UF , while minimizing the GEIF . This can be achieved

by increasing the storage capacity of the battery to support the stand-alone operation of the

system, which will highly reduce the dependency of the system on the grid, but will unfortunately

increase the overall cost of the system. These performance indicators can also be enhanced with

the incorporation and optimization of different renewable energy sources, such as wind or biomass.

For future work, the effect of the design variables on the performance indicators (SLF , UF , and

GEIF ) will be included in the sizing optimization problem. It should be noted that the presented

model can be further enhanced by including the effect of systems components degradation over the

lifetime of the project.

The computational platform presented in this work to model integrated solar hydrogen systems

can be extended to more complex hybrid systems. For instance, the use of wind power as a renewable

energy source can be added to this problem to promote further sustainability and drive the system
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to off-grid limits. Additionally, it would be beneficial to evaluate the influence of incorporating

environmental measures in the optimization problem, such as minimizing CO2 emissions, for both

off-grid and grid-connected designs. Subsequently, this allows for the enhancement of the current

economic model through the inclusion of the costs associated with mitigating CO2 emissions.

Another possibility for future work is the inclusion of post-production stages in the simulation,

such as hydrogen purification, storage, conditioning, and distribution to the end user, which offer a

broader perspective and can be nicely integrated with the current study to form a hydrogen supply

chain network design problem. This allows the opportunity to introduce other measures to assess

in the model, such as reliability, environmental impact, and safety.
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