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1 Abstract

2 Machine learning (ML) integrated density functional theory (DFT) calculations have recently been 

3 used to accelerate the design and discovery of heterogeneous catalysts such as single atom catalysts 

4 (SACs) through the establishment of deep structure-activity relationships. This review provides 

5 recent progress in the ML-aided rational design of heterogeneous catalysts with the focus on SACs 

6 in terms of structure-activity relationships, feature importance analysis, high-throughput 

7 screening, stability, and metal-support interactions for electrochemistry. Support vector machine 

8 (SVM), random forest regression (RFR), and deep neural networks (DNN) along with atomic 

9 properties are mainly used for the designing of SACs. The ML results shown that the number of 

10 electrons in d orbital, oxide formation enthalpy, ionization energy, Bader charge, d-band center, 

11 and enthalpy of vaporization are mainly the most important parameters for the defining of the 

12 structure-activity relationships for electrochemistry. However, the black-box nature of ML 

13 techniques occasionally makes a physical interpretation of descriptors, such as Bader charge, d-

14 band center, and enthalpy of vaporization, non-trivial.  At current stage, ML application is limited 

15 by the lack of a large and high-quality database. Future perspectives on the development of a large 

16 database and a generalized ML algorithm for SACs design are discussed to give insights for further 

17 studies in this field. 

18

19 Keywords: structure-activity relationships, high-throughput screening, reduction reaction, 

20 stability, metal-support interactions, QM calculations, Density Functional Theory
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1 1. Introduction

2 Heterogeneous catalysts play important roles in the synthetizing of high-value chemicals through 

3 thermal, electrochemical, and photochemical reactions. Designing improved catalysts requires 

4 deep understanding on how composition and processing affect the properties at the interface, but 

5 their progress is hindered due to the complexity in experimental and theoretical invesitigations.1 

6 Thus the successes have often involved time- and resource-consuming trial-and-error experimental 

7 and theoretical investigations. On the other hand, recent advances in Quantum Mechanics (QM) 

8 calculations provides accurate information about how molecules react at the interface to form 

9 various products, but QM calculations are limited in the size of the system and the time scale of 

10 the simulations. In order to discover new catalysts for specific applications, a combination of time-

11 consuming experimental and QM studies is used to develop atomic level understanding of the 

12 fundamental mechanisms and to develop preparation-structure or structure-activity relationships. 

13 Accordingly, there is a huge demand for the accelerated discovery of novel catalysts with desired 

14 activities. Machine Learning (ML)2–4 as a data-intensive tool can accelerate time-consuming 

15 experimental and QM studies to predict the catalytic activity in a vast dimensional space of 

16 heterogeneous catalysis.

17 Figure 1 illustrates the general workflow for the integration of QM calculations and ML for the 

18 accelerated discovery of heterogeneous catalysts and single atom catalysts (SACs). The predicted 

19 data from QM calculations and features vector is used to design and train ML algorithms. Trained 

20 ML algorithms will then be used for not only the prediction of the optimal activity of 

21 heterogeneous catalysts, but also for performing feature importance analysis. Subsequently, 

22 optimized catalysts will be used for the desired reaction to produce valuable chemicals and fuels.

23 Although the ML-assisted prediction of a single physical property such as formation energies5 and 

24 band gaps6 is widely applied for the purpose of materials discovery,7–10 its application for 

25 heterogeneous catalyst design and discovery11,12 is still in its early stage.13 Here, ML as a 

26 supportive tool, aims to guide, not to replace experiments and QM calculations in the search for 

27 ideal catalyst.14 However, the main hurdles for employing ML in heterogeneous catalyst design 

28 are the lack of a consistent database, the lack of a universal ML algorithm, and the existence of 

29 only a few descriptors as input features for ML.15

30 Herein, we review recent works reporting the incorporation of ML to QM calculations (typically 

31 density functional theory (DFT) calculations) and experiments to accelerate heterogeneous catalyst 
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1 design and discovery for various reactions. Recent review papers have summarized the recent 

2 studies on the application of ML for the catalytic reactions,16–20 reaction prediction,21 discovery of 

3 catalysts13,22–27, inverse design of catalysts,28 and catalysis informatics29,30. In this review paper, 

4 we focus mainly on the different aspects of ML in experimental and theoretical studies with an 

5 emphasis on the limitations and hurdles of ML in heterogeneous catalyst design. Inspired by the 

6 application of ML in heterogenous catalysts design, we continuous with a comprehensive review 

7 on the application of ML in SACs design and discovery with an emphasis on ML algorithms, 

8 different SACs, environmental effects, stability, support-metal interaction, structure-activity 

9 relationships, and high-throughput screening. Recent findings on the input features of ML and 

10 their importance for different electrochemical reactions will be reviewed, where the isolated 

11 electrons in d orbitals has been demonstrated to play key role in nitrogen reduction reaction 

12 (NRR).31 Subsequently, the application of different ML algorithms in several examples including 

13 O2 reduction reaction (ORR), O2 evolution reaction (OER), CO2 reduction reaction (CO2RR), 

14 NRR, and H2 evolution reaction (HER) will be provided to demonstrate the potential application 

15 of ML for the design and discovery of SACs for electroreduction reactions. Finally, a summary 

16 and future perspectives in the area of ML-guided SACs and DACs discovery are provided and 

17 discussed.

18

19 2. Machine learning (ML) algorithms 

20 The most important ML algorithms applied for the establishment of deep structure-activity 

21 relationship are normally support vector machine (SVM), random forest regression (RFR), deep 

22 neural networks (DNN), sure independence screening and sparsifying (SISSO), and Gaussian 

23 process regression (GPR). As shown in Figure 2a, SVM as a binary classification and regression 

24 algorithm, classifies data points into two distinct categories by using hyperplanes.32 The SVM 

25 assigns each point of training data to one of two classes and minimizes the error between the 

26 classes by dividing the categories using a hyperplane, that maximize the margin around the 

27 hyperplane. The hyperplane is completely defined by the data points that are closest to the plane 

28 and between the support vectors. SVM can be also used in mapping the non-separable data through 

29 the radial basis function (RBF) kernel by transforming a real space to a higher-dimensional space 

30 through several hyperplanes:33,34
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𝑓(x) =
N

∑
x

ωkG(x ― xk)
(3)

1 in which G is a radially symmetric function of its argument, G(r)=ϕ(|r|), x is the vector of joint 

2 angles or other parameters describing the current pose of the skeleton, xk is the pose of the kth 

3 example, and ωk represents the different weights of each vertex coefficient. SVM is highly efficient 

4 in terms of memory usage; however, the boundary between categories may become obscured at 

5 high number of training data points. SVM can also create both the linear and non-linear model, 

6 which the latter one is based on a kernel-based regression technique.35 When comparing SVMs 

7 and kernel ridge regression (KRR) algorithm, no big performance differences are to be expected. 

8 Usually, SVMs arrive at a sparser representation, which can be of advantage; however, their 

9 performance relies on a good setting of the C and γ hyperparameters for SVM method and the α 

10 and γ hyperparameters for KRR method. Normally, SVM method leads to faster predictions and 

11 consume less memory, whereas KRR method leads to less fitting time for large datasets. 

12 Nevertheless, because of the generally low computational cost of both algorithms, these 

13 differences are rarely significant for relatively small data points. Unfortunately, neither method is 

14 feasible for large datasets as the size of the kernel matrix scales quadratically increases with the 

15 number of data points.36

16 In comparison with other algorithms, random forest regression (RFR) needs fewer 

17 hyperparameters with higher robustness.37 In fact, as shown in Figure 2b, RFR algorithm acts as 

18 a aggregated decision tree algorithm to lower the bias by reaching a collective decision.38 The issue 

19 with the RFR is that it is not accurate for the out of sample predictions especially in case of small 

20 training data points.39 Furthermore, feature importance analysis can be easily obtained after the 

21 training of the RFR, SVM, and KRR algorithms.40 Similar to SVM and KRR methods, deep neural 

22 networks (DNN) algorithm has the potential to learn systems nonlinearity. As shown in Figure 2c, 

23 DNN is a mimic of the combination of neurons inside the human brain which is composed of 

24 several interconnected neurons in several layers. Similar to SVM and KRR methods, the number 

25 of neurons and layers as the hyperparameters for DNN should be optimized concerning the quality 

26 and accuracy of the output results for minimizing the loss functions such as root mean square error 

27 (RMSE), mean square error (MSE), and mean absolute error (MAE).41–43 

28 Compared with other ML techniques, the SISSO algorithm possesses high convenience and 

29 accuracy, while the fitting formulae generated by the SISSO model possess high efficiency and 
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1 portability.44 As shown in Figure 2d, GPR is a Bayesian approach to bringing waves to the ML 

2 area and works well with a small number of input data to provide uncertainty measurements on 

3 the predictions.45

4 ML techniques can be also applied as the text mining tools to gather the large numbers of already 

5 available QM calculations and experimental data in the literature, construct readily available 

6 databases applicable in the deep analysis, and study the preparation-structure-activity 

7 relationships. ML techniques for text mining can be categorized to supervised, unsupervised, and 

8 semi-supervised techniques.46,47 Supervised and semi-supervised algorithms such as neural 

9 networks and transfer learning can be used for text classification, information extraction, and 

10 analyzing the data, while unsupervised algorithms such as expectation-maximization (EM) mostly 

11 are used for text clustering, summarization, and dimensionality reduction.47

12

13 3. Inspiration from heterogeneous catalysts design

14 Although ML techniques are widely used for the design of heterogenous catalysts, but its 

15 application to single atom catalysts (SACs) is in its infancy. Therefore, in accordance with the 

16 trends in ML-aided heterogeneous catalyst design which are discussed in this section, we will 

17 continue with the ML-aided design of SACs in the section 4. Integration of ML with experimental- 

18 and QM-predicted data is widely used along with atomic and structural properties as the input 

19 features to predict the properties of heterogeneous catalysts.48–52 For example, a ML algorithm was 

20 trained  based on experimental data and structural properties as the input features to optimize 

21 singlet oxygen (1O2) quantum yields of core-shell plasmonic photocatalysts applicable in organic 

22 synthesis and photodynamic therapy (PDT).53 In addition, a ML model was trained based on DFT 

23 calculations data to predict and screen the surface reactivity of bimetallic alloys using atomic 

24 properties as the input features.54 To shed light on the integration of ML with experiments and QM 

25 studies for the heterogeneous catalyst design and discovery, more details are provided in the 

26 following sections.

27

28 3.1. Integration of ML with experiments

29 Learning from experimental data is the earliest application of ML in heterogeneous catalyst design 

30 for electrocatalysis, photochemistry, and biocatalysis.55–62 ML models can be trained based on 

31 experimental data to optimize the performance, decrease the number of experiments, therefore to 
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1 accelerate high-throughput experimentation.63,64 The input features for ML models can be 

2 synthesis and reaction operation conditions, to predict the catalytic performance.65 For example, a 

3 ML algorithm was used to calculate the yields of dioctyladipate synthesis by implementing the 

4 substrate molar ratio, enzyme amount, temperature, and reaction time as the input features.66 

5 Adaptive learning was applied to find high-activity AA’B2O6 cubic perovskite catalysts for OER 

6 by establishing a relationship between the electronic structure properties as the input features and 

7 the OER activity of the perovskite catalysts. It was revealed that the orbital electronic structure 

8 characteristics of the B-site ion is an important factor for OER.51 Also a multi-output support vector 

9 regression (SVR) as the ML algorithm was applied to predict the selectivity and conversion of 

10 methane oxidation.67 Likewise, ML allows the optimization of experimental data to increase the 

11 efficiency of heterogenous catalysts for the selective oxidation of methane.68 In addition, ML was 

12 applied on experimental data to predict the activity and selectivity of bimetallic metal catalysts 

13 with TM-Pt-Pt(111) and Pt-TM-Pt(111) architectures for ethanol reforming.69

14 One of the disadvantages of  ML models is that they are only applicable for the specific systems 

15 and are not transferable from one to another experiment due to the lack of consistent data and the 

16 presence of hidden variables for each specific experiment.70,71 

17 To overcome this issue, ML can be applied to analyze available data in the literature through data 

18 mining processes72,73 to extract and analyze previously published experimental data for future 

19 heterogeneous catalyst discovery.74–76 For example, ML was used to extract the data for the 

20 synthesis of oxide materials from 12000 scientific articles.77 In addition, several works have 

21 recently reported data mining from the literature for the ML-assisted design and discovery of new 

22 heterogeneous catalysts for oxidative coupling of methane.78–83 Figure 3 shows the workflow for 

23 the summary of data mining sequence from literature. It starts with a query search to find related 

24 papers from metadatabase, following by downloading and classifying the papers.46,84 The 

25 classified papers can be used for text mining using several ML algorithm such as KRR, RFR, 

26 XGB, SVR, XGB, ETR, and ANN to extract the data. The extracted data can be used for 

27 regression, classification, and/or clustering purposes. For example, several ML algorithms such as 

28 Extreme Gradient Boosting (XGB), Random Forest Regressor (RFR), and extra trees regression 

29 (ETR) were used to analyze the literature data for the oxidative coupling of methane on metal 

30 supported catalysts to discover new heterogeneous catalysts.85,86 Similarly, the statistical analysis 

31 of available data in the literature for CO oxidation, water-gas shift reaction, and oxidative coupling 
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1 of methane reactions was performed using several ML algorithms such as Kernel Ridge Regression 

2 (KRR), RFR, XGB, and SVR for the heterogeneous catalyst discovery. Through the feature 

3 importance analysis, reaction temperature was revealed as the key parameter for the three 

4 investigated reactions.87 Very recently, suitable catalysts for environmental applications were 

5 discovered based on available data in the literature, from which binary and ternary element 

6 catalysts such as MnxCoy and ZrxMnyCrz were identified and optimized through ML for high NOx 

7 conversion. Artificial neural network (ANN) was used to predict NOx conversion efficiency as a 

8 function of temperature and the element molar ratio. The conversion reaches a maximum around 

9 300 ℃ for the ternary element catalysts. Also, the loading amount of Zr was found to play an 

10 important role due to the fact that the Cr5+ species can reduce as the Zr loading amount increases, 

11 which can subsequently lower the NOx conversion efficiency.88 In addition, a ML algorithm along 

12 with 27 descriptors was applied to 2228 experimental data obtained from the literature89 to predict 

13 activity of heterogeneous catalysts which reveals that temperature is the most important descriptor 

14 for the water-gas shift reaction.90 

15 Moreover, learning from a large database in nanoscience can be used for rapid design and 

16 discovery of new heterogeneous catalysts using ML.91 However, the obtained dataset from the 

17 literature is mostly incomplete and inconsistent, which limits the application of ML. In order to 

18 generate a consistent database for the training of ML algorithms, high-throughput experimentation 

19 can be performed. As a result, high-throughput experimentation for oxidative coupling of methane 

20 was performed for 20 catalysts and 216 reaction conditions to produce a consistent dataset for ML 

21 to accurately predict C2 yields.92 From the feature importance analysis, temperature, in the range 

22 of 700 to 900 ℃, is the most important parameter in comparison with other parameters such as 

23 flow rate of Argon, flow rate of O2, flow rate of CH4, contact time, and composition of catalyst.

24 ML also has the great potential to alter the current form of conventional experiments and increase 

25 the efficient heterogeneous catalysts discovery through automation.93–95 In fact, ML-assisted 

26 robots can help to accelerate high-throughput experimentation without human interaction.96–99 As 

27 a result, a ML-guided robot was used to carry out 688 experiments within an experimental space 

28 of ten variables, 1000 times faster than manual approaches. The ML-assisted high-throughput 

29 experimentation revealed a new photocatalyst mixture with six times more activity.100 

30

31 3.2. Integration of ML with Quantum Mechanics (QM)
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1 Learning from Quantum Mechanics (QM) is highly desired due to existence of enormous amounts 

2 of quantitative QM-predicted data as training dataset for ML. The trained ML can be used for 

3 accelerated and accurate prediction of catalytic properties and adsorption energies of reaction 

4 intermediates.101 Using the adsorption energies as the key parameter, the reaction barrier can be 

5 predicted, the reaction mechanism can be investigated, and the desired catalyst can be discovered. 

6 For example, the local similarity kernel and Bayesian linear regression as ML algorithms were 

7 used for predicting adsorption energies of NO, O, and N on the Rh1–xAux alloy, based on the 

8 nanoparticle composition and size.102,103 The findings were used to predict the rate of NO 

9 decomposition on RhAu nanoparticles which indicates a maximum for catalytic activity at the 

10 particle diameter of 2.0 nm. In addition, structure-activity relationships was established for 

11 predicting CO and H adsorption energies based on structural properties using active learning across 

12 reaction intermediates.104,105 In fact, an automated screening approach through integration and 

13 optimization of ML was presented to guide DFT calculations for predicting catalytic activity.105 

14 The feasibility of this approach was demonstrated by screening various alloys combining 31 

15 elements, which resulted in 131 candidate surfaces across 54 alloys being identified for CO2RR 

16 and identification of 258 surfaces across 102 alloys for HER.104,105 Likewise, active learning was 

17 then used to accelerate the screening of CO adsorption energy on Cu based components.106

18 ML-predicted adsorption energies of reaction intermediates were also used for investigation and 

19 optimization of the reaction network of the syngas reaction (CO + H2) over Rh(111) catalysts at 

20 573 K and 1 atm. The Gaussian process regression (GPR) as a ML algorithm was trained based on 

21 a few DFT calculations to predict the adsorption energies for all intermediates in the reaction 

22 network. A probable reaction network from syngas to acetaldehyde was revealed by using a simple 

23 classifier to  select the potential rate-limiting steps, where only predicted potential rate-limiting 

24 steps were analyzed via further DFT calculations.107

25 ML was also trained on the DFT-calculated data to accelerate the prediction of adsorption energies 

26 of H and CHx intermediates on Cu-based alloys using 12 properties as the input features. Amongst 

27 several ML algorithms, the ETR algorithm resulted in the highest accuracy. Based on the feature 

28 importance analysis, the surface energy, element group, and melting point were identified to be 

29 the most important parameters for predicting adsorption energies.108 In addition, ML was applied 

30 for predicting adsorption energies of different intermediates on the metal alloys.109 ML was also 

31 used to predict adsorption energies of H on the Ni2P(0001) surfaces. From the feature engineering 
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1 perspective, the Ni-Ni bond length is the key parameter for HER activity, where a higher Ni-Ni 

2 bond length leads to lower HER activity.110 Similarly, ML was used to predict the adsorption 

3 energies of CO on bimetallic alloys, where the feature engineering analysis resulted in the d-band 

4 shape and sp-band filling as key parameters.111,112 Furthermore, to accurately predict the d-band 

5 as one of the most important parameters in CO adsorption, a GBR model was applied to several 

6 individual 3d, 4d, and 5d transition metal structures and their binary alloys for both the cases of 

7 metal impurities and overlayer-covered metal surfaces.113,114 Recently, ML was integrated with 

8 DFT calculations to predict adsorption energies of various molecules on metal oxide surfaces. 

9 Feature importance analysis indicates that the highest occupied molecular orbital (HOMO) of the 

10 adsorbates and the metal oxide surface energy are the most important parameters for molecular 

11 adsorption.115 ML in combination with DFT calculations was used for the prediction of adsorption 

12 energies of 12 elements on 38 metal surfaces by using SVR, RFR, and multi-layer perceptron 

13 regression (MLPR).116

14 Integration of ML and QM can also be performed to accelerate the discovery and high-throughput 

15 screening of heterogeneous catalysts. For example, ML integrated DFT calculations were used to 

16 accelerate discovery and high-throughput screening of 2D MXenes for HER.117,118 SVR, GPR, 

17 RFR, and AdaBoost were used as ML algorithms to accelerate prediction of ΔGH*, based on the 

18 distance between the nearest neighbor O atoms as well as surface oxygen-metal bond length are 

19 the most important parameters.117 Similarly, several ML models, such as DNN, KRR, SVM, and 

20 RFR, were used to accelerate high-throughput screening of ΔGH* by using several elemental 

21 properties as the input features. RFR led to the highest accuracy, with the lowest RMSE of 0.27 

22 eV for the test data. The feature importance analysis shows that HER performance is highly 

23 dependent on charge and structural properties. S- and Os2B-terminated Scn+1Nn (n =1, 2, 3) were 

24 revealed as appropriate catalysts for HER with ΔGH* near to zero and satisfactory hydrogen 

25 coverages. It was also shown that S functional groups are of great importance in regulating the 

26 HER performance. This is because filling antibonding states with electrons weakens the adsorption 

27 of H*, which is a key step for HER.118

28 For spinel structures, the ML model was used to accurately calculate the energy difference between 

29 the centers of the oxygen p and metal d bands to identify the better spinel oxide catalysts for OER. 

30 It was shown that a [Mn]T[Al0.5Mn1.5]O-O4 spinel catalyst has the optimal energy difference for 

31 high activity, as confirmed by experimental observations.119 ML was also applied to optimize 
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1 TiO2-supported Re and zeolite catalysts for methylation of aromatic hydrocarbons.120 Similarly, 

2 ML was applied on the DFT-calculated data to predict how strain in platinum core-shell 

3 nanocatalysts can improve the ORR activity. It was revealed that the optimal strain depends on the 

4 nanoparticle size  rather than bimetallic material composition and shell thickness.121

5 As with experimental data, there is a large amount of QM-predicted data in the literature that can 

6 be mined for the purposes of ML analysis to commence a new direction using a large database in 

7 the rational design of heterogeneous catalysis and SACs.122 For example, ML was applied on 

8 literature data for CO2 hydrogenation.123 In addition, a dataset of 37,000 structures from the 

9 Catalysis-Hub database,124 containing 11 adsorbates on 2000 metal alloy surfaces was used for 

10 training a Graph neural network (GNN) to predict adsorption energy based on the relaxed 

11 structures.125 

12 ML can be also used for investigating reaction mechanisms and finding active sites for reactions. 

13 For instance, the LASSO ML algorithm was trained on DFT-calculated data for predicting the 

14 methane activation mechanism on Rutile metal oxides.126 It was revealed that the energy of 

15 methane activation decreased if the reacted atoms including O, C, H, and metal atoms could be 

16 placed in the same plane. In addition, ML was combined with multi-scale simulations and QM to 

17 identify the performance of surface sites on Au nanoparticles as well as dealloyed Au surfaces for 

18 CO2RR.127 Based on ML results, surface defect is responsible for the high performance of Au 

19 surfaces. Similarly, ML was applied to DFT-calculated data to discover active bimetallic facets 

20 for CO2RR.128 It was revealed that most facets of nickel gallium bimetallics lead to similar activity 

21 on Ni surfaces.

22 ML integrated DFT calculations is able to predict the surface segregation energies of bimetallic 

23 catalysts through the establishment of structure-activity relationships.129 ML was also used for the 

24 prediction of reaction barriers on a variety of surface130 and for the discovery of phase diagram 

25 applicable in electrochemical reactions.131 In addition, symbolic regression as a ML technique in 

26 combination with QM calculations was used to accelerate the discovery of new perovskite catalysts 

27 with excellent OER activity. The ratio of octahedral factor to tolerance factor (μ/t) was revealed 

28 as a simple and important descriptor for the discovery of perovskite catalysts.132

29
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1 4. Single atom catalysts (SACs)

2 Along with the studies mentioned above on the heterogeneous catalysis, single atom catalysts 

3 (SACs) have recently been applied to several photochemical and electroreduction reactions to 

4 produce a wide range of chemicals.133–136 The unique properties and high atom-utilization 

5 efficiency of SACs make them interesting and promising.137–139 With these increased applications, 

6 the rational design of SACs has come into forefront to generate improvements in efficiency and 

7 feasibility of optimizing the desired products.140 DFT calculations are widely used for the rational 

8 design of SACs with efficient activity, selectivity, and stability. DFT calculations, however, are 

9 time-consuming and computationally expensive141,142 because the complexity of structure-activity 

10 relationships requires performing a large numbers of non-trivial DFT calculations in a large 

11 parameter space, including SAC type, environmental coordination, and reactants.143 On the other 

12 hand, ML is considered as a fast, accurate, inexpensive,144 and supportive tool145 to predict the 

13 properties of SACs towards their rational design.146–148 As shown in Figure 3, using ML, one can 

14 apply the available datasets from QM and DFT calculations to construct readily available databases 

15 applicable in the deep analysis and establishment of preparation-structure-activity relationships. 

16 The stablished relationships can be used to predict adsorption energy (Eads) or Gibbs free energy 

17 (ΔG) of various reaction intermediates adsorbed on SACs to discover more active and selective 

18 SACs. Once enough high quality databases are provided, a reliable ML model can be trained and 

19 constructed to address the electroreduction challenge.149,150 ML in combination with DFT 

20 calculations commences a new direction for rapid and low cost rational design of SACs predicted 

21 to optimal electroreduction catalytic activity.151,152 For example, several works have used ML to 

22 design single atom alloy catalysts (SAACs) with excellent stability and activity by predicting the 

23 Eads, ΔG, or aggregation energies.153–156 ML can be also used for the interpretation of 

24 characterization of SACs.157,158 For example, as shown in Figure 4, ML techniques have been used 

25 to interpret the EXAFS spectra based on which edge sites (zigzag or armchair) are responsible for 

26 the HER activity of cobalt SAC embedded in graphene.146 In the following section, incorporation 

27 of ML in the acceleration of structure-activity relationship, feature engineering, high-throughput 

28 screening, and stability of SACs is broadly discussed. As the application of SACs in thermal and 

29 electrochemical reactions is presented in the recent review paper,159 we only focus on the progress 

30 of ML for the designing of SACs and DACs especially for electrochemical reactions.

31
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1 4.1. Structure-activity relationship and feature engineering

2 ML is a strong tool160 to provide a fundamental understanding of structure sensitivity136,161,162 

3 through establishing deep relationships between catalytic activity and structural as well as atomic 

4 properties based on mechanisms and similarities in SACs.13,32,163 ML is considered as a new 

5 direction for the rational design of SACs by exploring feature importance analysis for 

6 electroreduction reactions to introduce more perceptions into the origin of activity and stability of 

7 SACs.164–166 For example, ML integrated DFT was applied to establish a relationship between 

8 various descriptors and hydrogen adsorption free energy (ΔGH*) for HER by altering the size and 

9 dimensionality of the nitrogen-doped 2D-carbon substrate for the 3d, 4d, and 5d transition metals 

10 (TM) as SACs.167 The sure independent screening and sparsifying operator (SISSO) as the 

11 supervised ML algorithm was applied with 10 input features including d-state center (εd), covalent 

12 radius (rcov), Bader charge (q), number of occupied d states (docc), Zunger radius (rd), number of 

13 valance electrons (Ne), ionization energy (IE), electronegativity (EN), and formation energy of 

14 single atom sites (Ef). Our evaluation on this work using support vector machine (SVM) algorithm 

15 is shown through Figure 6a, demonstrating that number of occupied d states (docc) and Bader 

16 charge (q) are the most important parameters for HER. Using SISSO algorithm, the following 

17 general descriptor for HER activity containing four properties was obtained, in which EN is 

18 electronegativity of the SACs:

∆GH = ―1.032(εd

q  ) + 13.424( 1
rcov) + 1.726(εd × EN) ― 0.045d2

occ ― 9.241
(1)

19 Similarly, several atomic properties were implemented as input features to establish structure-

20 activity relationships and predict OER overpotential of SACs on carbon substrates. The full 

21 connection neural network (FCNN) ML algorithm trained using DFT-calculated data leads to an 

22 accurate prediction of overpotentials with relative error of 6.49% and a 130,000 times reduction 

23 in computational time. It was revealed that d-electron count (de), the atomic radius of metal (AtR), 

24 and electron affinity (EA) are the most important parameters for OER overpotential. Moreover, an 

25 intrinsic descriptor (ϕ) that defines the overpotential of SACs based on their intrinsic atomic 

26 properties was proposed using the ML and DFT:168

ϕ = IE1deAtM(ENM

AtRM
+

NCENC

AtRC ) (2)
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1 where ENC, AtRC, and NC are the electronegativity of carbon, atomic radius of carbon, and the 

2 nearest neighbor carbon atoms, respectively. ENM, IE1, and AtM are the electronegativity of metal, 

3 first ionization energy, and atomic mass, respectively.

4 In another work, atomic properties such as electronegativity, electron affinity, and radii of the 

5 metal atoms were considered as input features to reveal ORR activity for heterobimetallic SACs. 

6 Using RFR, the origin of ORR activity of SACs was investigated experimentally or by establishing 

7 structure-activity relationships based on DFT-calculated data.169 Similarly, atomic properties were 

8 used to predict the catalytic activity of SACs and bi-atom catalysts for CO2RR. Based on results 

9 from the GBR algorithm, Ag-MoPc was revealed as an excellent electrocatalyst with a limiting 

10 potential of -0.33 V.170 Subsequently, the data from the abovementioned work was used as an 

11 example to evaluate the efficiency of a DFT-ML hybrid program for catalysis programming.171

12 In order to observe the effect of substrates on the activity and stability of SACs, the combination 

13 of atomic and structural properties should be considered as input features for the training of ML 

14 algorithms. Therefore, several atomic as well as structural properties were used to establish 

15 structure-activity relationships for discovery and design of bifunctional rhodium SACs on 

16 defective g-C3N4 for OER and ORR using the GBR ML algorithm.172 The atomic and structural 

17 properties include TM bond length and coordination atoms (dTM‑N1, dTM‑C1, and dTM‑C2), the 

18 d-band center (εd), the charge transfer of TM atoms (Qe), the electronegativity (EN), the electron 

19 affinity (EA), the first ionization energy (IE1), the radius of TM atom (AtR), and the number of 

20 TM-d electrons (de). As shown in Figure 5a, the GBR model predicts ΔG*OH with an R2 = 0.99 

21 with a low RMSE = 0.03 eV. However, this work included only 16 points of input data, which is 

22 insufficient. Feature importance analysis revealed that first ionization energy (IE1) and the charge 

23 transfer of transition metal atoms (Qe) are the key features (Figure 6b). The most important 

24 descriptor IE1, the energy needed to remove one or more electrons from a neutral atom to form a 

25 positively charged ion (which increases from left to right in each period) affects the OER and ORR 

26 activities.

27 Similarly, atomic and structural properties including the number of electrons in d orbitals, the 

28 oxide formation enthalpy, the Pauling electronegativity of the metal atom, the sum of Pauling 

29 electronegativity of surrounding atoms, and the average pKa values of the surrounding atoms were 

30 used to establish structure-activity relationships. To do this, the RFR algorithm was applied based 

31 on DFT-calculated data for 104 SACs embedded in graphene including M@C3, M@C4, 
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1 M@pyridine-N4, and M@pyrrole-N4. RFR algorithm revealed that the number of electrons in d 

2 orbitals is the most important parameter for ORR, OER, and HER. The trained RFR algorithm was 

3 employed to predict the activity of 260 graphene-based SACs (M@NxCy), through which, it was 

4 revealed that Fe@pyrrole-N1C3 and Fe@pyrrole-N2C2 were more active than Fe@pyridine-N1C3 

5 and Fe@pyridine-N2C2.173

6 Comparably, 8 atomic and structural properties including oxide formation enthalpy (Hf, ox), the 

7 number of electrons in d/p orbitals (dpe), electron affinity (EA), electronegativity (EN), number of 

8 coordinated N atoms (NN), first ionization energy (IE1) of the central atoms, the sum of the 

9 electronegativity of neighboring C and N atoms (SEN), and the distance ratio (DR) were used to 

10 establish the structure-activity relationship for two electron ORR using RFR. Figure 5b shows the 

11 comparison of ML- and DFT-predicted ΔGO* for this system. Through the feature importance 

12 analysis of 8 intrinsic features, it was revealed that the oxide formation enthalpy (Hf, ox) and the 

13 number of electrons in d/p orbitals (dpe) are the most important parameters for determining ΔGO* 

14 of SACs (Figure 6c).174 The feature importance analysis implies that metals like Ag, Au, and Pd 

15 with a weaker affinity for oxygen, can remarkably decrease band hybridization between the 

16 oxygen and metal, leading to enhanced H2O2 selectivity.

17 As the complexity of SAC structures increases, new and general descriptors will be needed for 

18 establishing the correct structure-activity relationships. For example, the number of isolated 

19 electrons in d-orbitals, obtained from a bidirectional activation mechanism, was suggested as a 

20 new input feature for ML algorithm, which introduces new insights for the rational design of SACs. 

21 It was shown that this new descriptor is the most important parameter for NRR, while the electron 

22 affinity of metal atom was shown to be the most important parameter for HER. ML using this new 

23 input features was therefore used to accelerate the computational screening, design, and discovery 

24 of SACs by establishing the structure-activity relationship on 126 SACs for NRR, validated by 

25 experimental studies and DFT calculations.31 

26 Unlike SACs, the geometry of dual atom catalysts (DACs) is more complex and the synergetic 

27 effect between two metal atoms plays important role in the performance. In other words, the linear 

28 relationships for the DACs are significantly weakened, demonstrating that the DACs’ activity 

29 requires new descriptors to consider the effects of both metals in the structure. Therefore, in order 

30 to consider the synergetic effect of two metals, ML integrated DFT was used to identify the 

31 structure-activity relationship of DACs embedded on nitrogen-doped graphene for ORR. Figure 
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1 4c shows the ML- and DFT-predicted limiting potentials and also the feature importance on the 

2 limiting potentials using the random forest regression (RFR) model.175 The feature importance 

3 analysis indicates that the average distance between metal and N atoms (M12-N), the distance 

4 between metal atoms (M1-M2), and the outer electron number of metal atoms (Ne,O) are the most 

5 important factors on the ORR limiting potentials (Figure 6d).

6 In order to shed more light on the structure-activity relationships, the effect of different 

7 intermediates should also be considered on the activity of SACs. Therefore, in addition to atomic 

8 and structural properties, the properties of intermediates were also considered as input features for 

9 training the RFR algorithm to calculate the binding energies of H*, OH*, O*, and OOH* on SACs 

10 embedded in nitrogen-doped graphene using 1700 DFT-calculated data points. Based on the 

11 feature importance analysis, the type of intermediate was found to be one of the most important 

12 features.176 

13 The input features with high feature importance can be used for descriptor-based SACs design to 

14 predict adsorption energies. For example, descriptor-based design was used to predict adsorption 

15 energies of intermediates on SACs embedded in graphitic carbon nitride (g-C3N4), g-CN, and g-

16 C2N. It was shown that Ni@g-CN, Cu@g-CN, and Co@C2N are excellent SACs for CO2RR.177 It 

17 was also shown that catalytic activities are highly related to ΔGOH*, ΔGOCH*, the number of 

18 electrons in d orbitals, and the TM enthalpy of vaporization.

19 The descriptors can be also used for establishing volcano-shaped relationships178 from which the 

20 candidate SACs for various electrocatalytic reactions can be found.179 Therefore, a new intrinsic 

21 descriptor based on the bonding, topology, and electronic structure of SACs embedded in carbon 

22 supports, shown through Figure 7a, was defined as follows:180

∅ =
NeEN

IR

(3)

23 In which Ne, EN, and IR are the valence electron number, electronegativity, and ionic radius of 

24 central metals, respectively. This descriptor was used for volcano plots of overpotential, onset 

25 potential, and Faraday efficiency, shown through Figure 7b-d, indicating two definitive volcanoes 

26 in the plot for overpotential with Ti and Co located at the summits. Another descriptor to consider 

27 the effect of supports was also introduced as follows:140

φ = de
ENM + a(NNENN + NCENC)

ENO/H

(4)
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1 In which ENN and ENC, NN, NC, and de represent the electronegativity of N atoms, the 

2 electronegativity of C atoms, the number of nearest-neighbor N atoms, the number of nearest-

3 neighbor C atoms, and valence electrons in d orbitals, where α is the correction coefficient. These 

4 descriptors were used to predict adsorption energies of different intermediates for CO2RR. 

5 Moreover, these descriptors were used for volcano plots of onset potential and overpotential with 

6 Ni and Pt located at the summits of volcano plots.

7 However universal and appropriate descriptors are still insufficient, as input features to establish 

8 structure-activity relationships for all types of SACs, supports, and electroreduction reactions.181 

9 Therefore, a large number of DFT calculations and ML analyses are still needed to screen different 

10 descriptors for each reaction system.182

11

12 4.2. High throughput computational screening for SACs

13 DFT calculations have been applied for high-throughput screenings of SACs,96,183–187 where, for 

14 example, S was found to be the best dopant in graphene-based Co SACs for HER.188 ML, however, 

15 can accelerate the screening of SACs and decrease the computational cost and time by screening 

16 for similarities in SACs and establishing deep structure-activity relationships.147,189–191 Therefore, 

17 integration of ML algorithms and DFT calculations has been performed for the rapid and high-

18 throughput screening of SACs.192 For example, ML combined DFT calculations were employed 

19 to screen and design MBenes-based SACs for HER. ΔGH* values were calculated accurately via 

20 SVM by using atomic and structural features. The Bader charge transfer of the surface metal was 

21 revealed as the most important parameter for HER activity. Stable Co2B2 and Mn/Co2B2 were 

22 also identified as efficient HER catalysts because |ΔGH*|<0.15 eV.193 In addition, the screening of 

23 SACs embedded on MXenes was performed using ML and DFT calculations to show the ability 

24 of ML to screen new candidates with excellent performance.194 It shows that the HER catalytic 

25 activity is dependent on the synergistic effect between single metal atoms and substrates. In 

26 addition, the bag-tree algorithm supervised ML technique was applied for the separation of DFT-

27 calculated data and converse prediction of HER performance.195 ML integrated DFT calculations 

28 were applied to accelerate the discovery and screening of TM and lanthanide (Ln) metals for SACs 

29 embedded in graphdiyne, based on adsorption energies, adsorption trend, electronic structures, 

30 reaction pathway, and active sites.
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1 In addition to HER, ML algorithms were employed based on DFT-calculated data for the fast-

2 screening of efficient NRR and CO2RR electrocatalysts.105 For instance, graph-based 

3 convolutional neural network (GCNN) was applied for the accelerated screening of SACs for 

4 NRR. The results shows superior NRR selectivity over HER with overpotentials of 0.44 V, 0.40 

5 V, 0.24 V, 0.60 V, 0.17 V, 0.17 V, 0.64 V, 0.37 V and 0.58 V, respectively for SACs embedded 

6 in MBenes, defect-engineered 2D-materials, and 2D p-conjugated polymer, TaB, NbTe2, NbB, 

7 HfTe2, MoB, MnB, HfSe2, TaSe2 and Nb.196 A deep neural network (DNN) was used for rapid 

8 and high throughput screening of efficient SACs embedded on boron-doped graphene for NRR. 

9 The adsorption and free energies were calculated using the light gradient boosting machine 

10 (LGBM) model based on the bonding characteristics and structural properties as input features. 

11 The feature importance analysis was also provided for nitrogen fixation, revealing that TM 

12 coordination number and the number of hydrogen atoms are the key parameters.197 Extreme 

13 gradient boosting regression (XGBR) was implemented as a supervised ML algorithm to screen 

14 ΔGCO* and ΔGH* for 1060 SACs embedded in metal-nonmetal co-doped graphene using simple 

15 features for CO2RR.198 Based on feature importance analysis, the Pauling electronegativity (E_M), 

16 covalent radius (M_cov), and first ionization energy of metal atoms (1E_M) are the most important 

17 parameters on ΔGCO*.

18

19 4.3. Stability of SACs

20 SAC stability is the prerequisite for the constructing high-activity SACs, which should be 

21 considered by studying metal-support interactions, aggregation energies, and adsorbate-induced 

22 structural changes.199–202 In other words, constructing a strong coordination environment for 

23 achieving SACs with strong metal-support interactions is highly desirable and can be achieved by 

24 increasing either the anchoring capability of supports or the number of anchor sites.203 The former 

25 can be performed by optimizing the coordination environment and the coordination atoms. The 

26 latter can be achieved by introducing intrinsic defects and structural engineering through 

27 controlling its size and morphology.

28 In this regard, ML can be applied as the new guideline to efficiently synthesize highly-loaded-yet-

29 stable SACs with strong metal-support interactions.36,204 For example, ML integrated DFT 

30 calculations were employed to correlate the stability of SACs embedded on oxide supports to the 

31 binding energy (Ebind) and cohesive energy of the bulk metal (Ec). Assisted by ML methods, it was 
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1 found that the diffusion activation barrier (Ea) correlates with E2
bind/Ec in the physical descriptor 

2 space,205 while Ebind was previously explored  to be correlated to Ec.206

3 Designed SACs should be thermodynamically stable with lowest energy state. Therefore, 

4 thermodynamic stability and optimal combination of dual atomic catalysts embedded in 

5 graphdiyne were also investigated by using the d-band center modifications and formation 

6 stability. Using gaussian process regression (GPR) as the ML algorithm with seven input features, 

7 the potential f-d orbital coupling was found as the most important factor in tuning the d-band center 

8 with high stability.33 Based on these results, the combination of lanthanide metals and transition 

9 metals leads to appropriate stability and activity. The thermodynamic stability of SAACs was also 

10 investigated in terms of aggregation energies and adsorbate (O*)-caused changes in structure by 

11 using ML algorithms trained with DFT-calculated data for 38 different SAACs on Cu support. A 

12 GPR model was applied on the aggregation energy and O* adsorption energies with a MAE of 

13 0.092 and 0.091 eV, respectively. Moreover, the GPR model is extendable to other substrates, 

14 adsorbates, and larger cluster sizes to address the huge number of degrees of freedom and decrease 

15 the calculation time.207

16 The zero-valence stability and electron transfer ability of SACs should be also investigated on the 

17 stability by considering the redox process between transition metals and graphdiyne support using 

18 ML and DFT. It was indicated that amongst transition metals, Co, Pd, and Pt show high stability 

19 of zero-valence SACs based on the difference of energy barrier between gaining and losing 

20 electrons.208 The Fuzzy C-Means (FCM) as a unsupervised ML algorithm was used for the 

21 separation of DFT-calculated data. The developed ML algorithm has also been applied to create a 

22 database capable of screening out SACs embedded in graphdiyne.208 The different number and 

23 directions of electron transfer between the transition metals and graphdiyne were also analyzed, 

24 finding that the initial one-electron transfer is the most difficult one.

25 Very recently, the stability of the SAACs configuration based on a ML based approach was 

26 examined to investigate the tendency of the promoter atom to diffuse into the bulk material, form 

27 surface clusters, or avoid alloying with the host.209 Decision trees, neural networks (NN), and 

28 support vector machines (SVM) with atomic properties as the input feature, were used to analyze 

29 DFT-calculated data. Then, a physical bond counting model was combined with a kernel ridge 

30 regression (KRR) algorithm to expand the domain where the model is useful.
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1 The stability and activity of SACs embedded in NxCy (TM@NxCy) was screened and explored in 

2 terms of structure, coordination, formation energy, structural and electrochemical stability, 

3 electronic properties, electrical conductivity, and reaction mechanism for HER, OER, and ORR 

4 using DFT and ML-based descriptors.210 Among various TM@NxCy SACs, the TM@N2C2 shows 

5 higher electrochemical catalytic performance, tends to be more easily formed, and possesses 

6 longer durability without aggregation or dissolution. In the TM@N2C2 templates, Ni/Ru/Rh/Pt 

7 show low HER overpotentials. The ML-based descriptors indicate superior HER, OER, and ORR 

8 performances of TM@N2C2 compared to those of bench-mark noble metal catalysts. It was shown 

9 for the first time that both TM and carbon atoms participates in H adsorption.

10 Table 1 shows the summary of applied ML algorithms and their applications in SACs designing 

11 through the input features engineering and feature importance analysis. The list of abbreviation for 

12 Table 1 are presented in Table 2. As shown in Table 1, SVM, KRR, RFR, and DNN are mostly 

13 used as the supervised ML algorithm for the design of SACs to describe the relationship between 

14 the input features and SACs activity. All the mentioned algorithms are normally applied in Scikit-

15 learn211. Atomic properties are mainly used as the input features for the designing of SACs from 

16 which the number of electrons in d orbital and enthalpy of vaporization are usually the most 

17 important input features for ML algorithms. However, the application of ML is limited by the lack 

18 of not only a large and high-quality database but also a generalized ML algorithm for further 

19 studies in this field.

20 Moreover, based on Table 1, the d-band center, enthalpy of vaporization, Bader charge, ionization 

21 energy, electron affinity, covalent radius, the electron numbers in d orbital, formation energy, 

22 oxide formation enthalpy, etc. mainly are used as the key descriptors to describe the catalytic 

23 activity of SACs. Still, one of the main hurdles for employing ML in heterogeneous catalyst design 

24 is the lack of appropriate descriptors as input features for ML. An appropriate descriptor needs to 

25 simultaneously possess: (1) physical interpretation, (2) high simplicity, and (3) relatively high 

26 feature importance. To some extent, the black-box nature of ML techniques occasionally makes a 

27 physical interpretation of descriptors, such as d-band center and enthalpy of vaporization, non-

28 trivial. In particular, the d-band center is widely adopted as an efficient descriptor,212 typically with 

29 high feature importance to describe the reactivity of SACs. However, the d levels of atomically 

30 dispersed metal atoms on a graphene substrate may not form a band that makes evaluating the 

31 position of the d-band center impossible. Therefore, frontier molecular orbitals and density of 
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1 states (DOS) seem more appropriate descriptors than the d-band center.213 However, obtaining 

2 frontier molecular orbital and DOS requires time-consuming DFT calculations, making this 

3 descriptor not worthwhile. In fact, the simplicity of descriptors requires using metal atom and 

4 substrate properties, being readily obtained without needing time-consuming DFT calculations. In 

5 contrast to Bader charge and DOS, descriptors such as atomic number, number of electrons in d 

6 orbital, ionization energy, and coordination number of metal atoms possess simplicity 

7 requirements.

8
9 5. Summary and future prospective

10 Recently ML has gained much interest for rational deign of heterogenous catalysts due to its 

11 potential for robust and fast prediction of catalysts properties by establishing structure-activity 

12 relationships. High throughput screening and feature importance analysis can be achieved through 

13 deep structure-activity establishment. However, ML is still at an early stage for designing of 

14 heterogeneous catalysts. In this review, high throughput screening and feature importance analysis 

15 using ML are provided as the guidelines for heterogeneous catalysts screening and discovery. 

16 Although much research has been carried out on the application of ML to improve the activity and 

17 stability of heterogeneous catalysts and SACs, there are still challenges to be resolved, requiring 

18 additional studies as follows:

19 (1) There remains room for ML to investigate the catalytic performances and strability,214–217 

20 and improve calculated parameters for stable SACs.218,219 In addition, ML technique can 

21 help to investigate the hybridization of SACs,220 atomic interface effect,221 and the 

22 aggregation energy 207. Moreover, SACs face such challenges as low metal loading, low 

23 selectivity and activity, and the lack of catalytic mechanisms.137 Therefore ML can help 

24 the community to understand the reaction pathways and the catalytic mechanisms222–226 to 

25 improve selectivity and activity of high-loaded SACs on graphene supports.227–230 In 

26 addition, there is a clear need for  ML to consider environmental effects, interfacial 

27 engineering, SAC coverage, and the potential for agglomeration. ML can be used for the 

28 synthesis of high-loaded SACs, multi-metal SACs, and multi atom catalysts.231,232 In other 

29 words, since the structure-activity relationships for nanoclusters and DACs is much more 

30 complicated than SACs,233 it will be useful to apply ML for predicting adsorption energies 

31 for them using new descriptors to consider the synergetic effect of several metals.234
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1 (2) ML techniques continue to improve for studying adsorption energies, overpotentials, and 

2 metal-support interactions for various SACs, but the field of predictive SAC synthesis to 

3 guide experiments is much needed. Because SACs face tedious preparation 

4 processes,8,235,236 ML can accelerate high-throughput experimentation for synthesis and 

5 characterizations of SACs.191,237–242 ML can be also applied to predict Faraday Efficiency 

6 and onset potentials to help understand the volcano plots.

7 (3) A major hurdle for developing ML-aided heterogeneous catalyst design is the lack of 

8 sufficient and consistent datasets, data scarcity, bias, and noise from both experiments and 

9 QM calculations, which is a high priority to avoid overfitting.48 In order to solve this issue, 

10 active learning and transfer learning can be applied which are efficient in compensating for 

11 the lack in data. In other words, having a large database composed of DFT-calculated and 

12 experimental data is required to train the generalized ML algorithm for systematic and 

13 comprehensive discovery of SACs. We expect that in the near future, with a huge database 

14 and a universal ML algorithm, the applicability of theoretical calculations for 

15 electroreduction reactions using SACs will be improved greatly.243 In addition, the vast 

16 parameter space for dynamic catalysts requires applying ML to screen candidate catalysts 

17 by predicting the regions with high selectivity and operability.244 The effect of coordination 

18 number, coordination atoms, designed bond length, and bond angle on the current density, 

19 overpotentials, and reaction mechanism should be considered through ML.245–247

20 (4) ML has the potential to predict the properties of SACs very quickly and accurately, but its 

21 application has been limited to specific systems using various ML algorithms. Therefore, 

22 a fair comparison to assess the strengths and best use of different ML algorithms is needed. 

23 Also, similar to ML-aided retrosynthesis and reaction planning,72,248,249 a strong need is for 

24 development of a universal (generalized) ML algorithm that changes ML from a supportive 

25 tool to a surrogate tool for SACs design. This universal ML algorithm should be extended 

26 to widespread SACs and supports for all electroreduction reactions toward efficient and 

27 cost-effective potential SACs to balance between the activity and stability.250 

28 (5) As shown in Table 1, two-dimensional (2D) materials leading to reduced computational 

29 cost due to their simplicity in structure. However, three-dimensional (3D) materials, such 

30 as Oxides and Nitrides,251,252 play major role in catalysis and should be heavily investigated 

31 by existing or new ML algorithms.
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1 Table 1. Summary of ML algorithms and their applications in SACs’ design. List of abbreviations are presented in Table 2.
# Support/substrate ML algorithms Reaction Purpose Input features Most important 

features
YearRef.

1 CeO2, TiO2, MgO, ZnO, 
SeTiO3, MoS2, and 
graphene

LASSO, elastic net, ridge --- stability Ec, Ec-1, Ec0.5, Ec-0.5, Ec2, Ec-2, ln(Ec), 
Eb, Eb-1, Eb0.5, Eb-0.5, Eb2, Eb-2, ln(Eb), 
Eb2/Ec

(Eb)2/Ec 2020 205

2 graphdiyne (bi-atom 
catalysts)

GPR --- optimal combination of 
metals for high stability

--- potential f-d 
orbital coupling 

2021 33

3 graphdiyne FCM --- clustering the data EA, EN, Qe, εd, etc. --- 2019 208

4 Cu, Ru, Rh, Pd, Ag, Re, 
Os, Ir, Pt, and Au

GKR, SVM, GPR --- aggregation energy and 
ΔGO*

AtN, Atwt, AtPN, AtGN, AtR, EN, IE, EA, 
B01, O*, etc.

AtR, EN, and 
AtGN

2020 207

5 transition metals DT, SVM, NN, hybrid 
KRR

--- stability AtN, Atwt, AtGN, AtR, rcov, PEN, IE1, Ef, de, 
etc.

--- 2020 209

6 NxCy GNB, LR, KNN, radius 
neighbor classifier, 
support vector classifier, 
NN, DT, RFR, ETR, and 
GBR

HER, OER, 
and ORR

stability and activity AtN, IE1, etc. --- 2021 210

7 graphene KRR, RFR, NN, SISSO HER ΔGH* εd, rcov, q, dunocc, docc, N, rd, Ef, IE, EN docc and q 2020 167

8 graphene (dual atom 
catalysts)

RFR ORR UL M1-M2, M12-N, AtR, Ne,O, PEN, IE1, EA of 
two metals 

M12-N, M1-M2, 
and Ne,O

2020 175

9 carbon FCNN OER η AtR, de, EN, EA, and IE1 de, AtR, and EA 2021 168

10 g-C3N4 GBR OER and 
ORR

ΔGOH* εd, Qe, EN, EA, IE1, AtR, and de, etc. IE1 and Qe 2021 172

11 graphene RFR HER, ORR, 
OER

UL de, Hf, ox, PEN, the sum of PEN, etc. de 2020 173

12 2D materials LSBoost HER and 
N2RR

ΔG EN, EA, IE, and diso, e, etc. diso, e,for NRR 
and EA for HER

2021 31

13 graphene RFR and SVM --- ΔGH*, ΔGOH*, ΔGO*, 
and ΔGOOH*

--- adsorbate type 2020 176

14 2D materials RFR ORR ΔGO* Hf, ox, dpe, EN, EA, IE1, NN, SEN, etc. Hf, ox and dpe 2019 174

15 graphene NN HER EXAFS spectra experimental EXAFS spectrum --- 2021 146

16 g-C3N4, CN, and C2N ETR method CO2RR ΔGOH* and ΔGOCH* AtN, de, AtR, EN, Hvap, IE, and EA de and Hvap 2020 177
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17 transition metals SVM, KRR, GBR, GPR, 
DTR, ETR, RFR, ABR, 
MLPR, KNR

CO2RR ΔGCO*, ΔGCHO*, 
ΔGCOOH*, ΔGHCOO*, and 
ΔGCOH*

EN, Ne, and ratio of EN and Ne ratio of EN and 
Ne 

2020 192

18 Au (111) RFR N2RR ΔGN2* AtR, EN, EA, AtGN, de AtGN 2021 166

19 MBenes SVM HER ΔGH* q, AtR of C, N, and B elements, molar 
ratio, AtR, and EA of metal

q 2020 193

20 MXenes SVM, RFR, ANN, 
LASSO, KNN, Bayesian

HER ΔGH* and E --- Molar volume of 
surface element

2021 194

21 MBenes and 2D-materials LGBM N2RR ΔGN2* --- N-N bond length 2021 196

22 graphene extreme GBR CO2RR and 
HER

ΔGCO* --- --- 2020 198

23 graphdiyne Bag-tree algorithm HER ΔGH* --- --- 2020 195

24 graphdiyne DNN and LGBM N2RR and 
HER

ΔG EN, AtN, AtR, NN, CN, etc. CN 2020 197

25 C2N, C1N1, and C1S1 RFR ORR and 
OER

ΔGO* AtN, AtR, Ne,O, EN, IE1, EA, SEN, Hf, ox Hf, ox and Ne,O 2021 165

26 Cu GBR, SVM, RFR CO2RR ΔGCO* --- Ne 2021 253

1
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1
2 Table 2. List of abbreviations for Table 1.

Abbreviation Explanation Abbreviation Explanation
GPR gaussian process regression Ec, Eb cohesive energy of bulk metals, binding energy
GKR gaussian kernel regression AtN, Atwt, AtR atomic number, atomic weight, atomic radius
GNB gaussian naive bayes AtPN, AtGN period number, group number
SVM support vector machine EN electronegativity
LASSO least absolute shrinkage and selection operator PEN Pauling electronegativity
SISSO sure independence screening and sparsifying 

operator
SEN sum of the electronegativity of coordinated atoms 

such as N and C
FCM fuzzy C-Means IE, IE1 ionization energy, first ionization energy
GBR gradient boosting regression EA electron affinity
LGBM light gradient boosting machine εd d-states center
LR logistic regression rcov covalent radius
KRR kernel ridge regression rd Zunger radius
RFR random forest regression Ne,O outer electron number
ERT extremely randomized trees docc, e number of occupied d states
NN neural network de the electron numbers of d orbital
FCNN full connection neural network diso, e isolated electrons in d orbitals
DNN deep neural network dpe adjusted electron numbers of d/p orbital
ANN artificial neural network Ne number of valance electrons
KNN k-nearest neighbors Ef formation energy of single atom site
LSBoost least-squares boosting Hf, ox oxide formation enthalpy
DT decision tree HVap enthalpy of vaporization
DTR decision tree regression q, Qe Bader charge, charge transfer of metal atoms
ETR extra tree regression CN coordination number
ABR adaptive boost regression NN number of coordinated N atoms
TPOT tree-based pipeline optimization tool M1-M2 the distance of two metal atoms
MLPR
KNR

multilayer perceptron regression
k-neighbor regression

M12-N the average distance between two metal atoms 
and the coordinated N atoms

SAC Single atom catalyst η overpotential
SAAC Single atom alloy catalyst ΔG Gibbs free energies

E Adsorption energies
UL limiting potential
Vonset onset potential

3
4
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1

2
3 Figure 1. The general workflow for the integration of QM calculations and ML for the 

4 rational design of heterogeneous catalysts. The process contains several steps: data generation 

5 using QM calculations, training of ML, optimization, and feature importance analysis, and using 

6 designed catalysts to produce chemicals and fuels.
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1

2 Figure 2. Machine Learning Algorithms. (a) Schematic of SVM algorithm. The hyperplane 

3 divides SACs into two distinct classes based on the largest distance of the data points placed 

4 between the support vectors. Class 1 and class 2 (red and blue circles) show the SACs with similar 

5 properties based on features x1 and x2. (b) Schematic of RFR. orange and green circles represent 

6 decision nodes containing ‘if/then’ statements. The result that is predicted by the highest number 

7 of decision trees (majority voting) is given as the output of the RFR. (c) Schematic of DNN. Circles 

8 are representing neurons in the input, hidden, and output layers of the DNN. Neurons are 

9 interconnected using the black lines. (d) Schematic of GPR algorithm. Predicted mean (red line) 

10 and confidence interval (light orange interval) for GPR algorithm trained based on input dataset 

11 (blue dots).
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1
2 Figure 3. The workflow for the data mining from literature. Summary of data miming 

3 sequence from literature using several ML algorithms such as KRR, RFR, XGB, SVR, XGB, ETR, 

4 and ANN. 
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1
2 Figure 4. ML for the interpretation of the EXAFS of Co-N doped grapheme. (a) establishment 

3 of training data using MD-EXAFS calculations for Co-4N-P, Co-2N-A, and Co-2N-Z. (b) the 

4 architecture of the DNN composed of one input layer of the EXAFS spectrum, two hidden layers, 

5 and one output layer of the proportion vector. (c) The estimation of local structural proportion 

6 from the experimental EXAFS measurement. Reproduced with permission from ref. 146, copyright 

7 2021, Wiley-VCH. Results show that ML is an appropriate and powerful tool for the interpretation 

8 of EXAFS.
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1
2 Figure 5. Density functional theory (DFT)-based Machine Learning. Comparison of ML- and 

3 DFT-predicted (a) ΔGO* using RFR algorithm, Reproduced with permission from ref. 174, 

4 copyright 2019, American Chemical Society. (b) limiting potentials using RFR algorithm, 

5 Reproduced with permission from ref. 175, copyright 2020, Royal Society of Chemistry. (c) ΔGOH* 

6 using GBR algorithm. Reproduced with permission from ref. 172, copyright 2021, American 

7 Chemical Society.  Results indicate that ML can be used for the out-of-sample (test set) predictions 

8 of activity for SACs using the deep structure-activity relationships. However, the quantity of 

9 training dataset is not enough for having a generalized ML algorithm.
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1
2 Figure 6. Feature importance analysis. (a) The feature importance for SACs embedded in 

3 nitrogen-doped graphene indicating that number of occupied d states (docc) and Bader charge (q) 

4 are the most important parameters for HER. Please note that this is our evaluation on ref. 167. 

5 Reproduced with permission from ref. 167, copyright 2020, American Chemical Society. (b) The 

6 feature importance based on the GBR algorithm for rhodium SACs. Reproduced with permission 

7 from ref. 172, copyright 2021, American Chemical Society. First ionization energy (IE1) and the 

8 charge transfer of TM atoms (Qe) are the most important factors on the ΔGOH*. Inset shows the 

9 structure of rhodium SACs on defective g-C3N4 for OER and ORR. (c) The feature importance 

10 based on the RFR algorithm for SACs embedded on nitrogen-doped carbon supports. Reproduced 

11 with permission from ref. 174, copyright 2019, American Chemical Society. The oxide formation 

12 enthalpy (Hf, ox) and the adjusted electron numbers of d/p orbital (dpe) are the most important 

13 factors on the ΔGO*. Inset shows the structure of SACs embedded on nitrogen-doped carbon 

14 supports for two-electron ORR. (d) The feature importance for dual atom catalysts (DACs) based 

15 on a RFR algorithm indicating that the average distance between metal atoms and the coordinated 
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1 N atoms (M12–N), the distance between two metal atoms (M1–M2), and the outer electron number 

2 of metal atoms (de) are the most important factors on the ORR limiting potentials. Reproduced 

3 with permission from ref. 175, copyright 2020, Royal Society of Chemistry. Inset shows the 

4 structure of DACs embedded in nitrogen-doped graphene for ORR. Results indicate that feature 

5 engineering of SACs and DACs depends on the application and the type of substrate. Please see 

6 Table 2 for the abbreviations.
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1

2 Figure 7. Volcano plots. (a) Structure of SACs embedded in nitrogen-doped graphene supports 

3 for the descriptor-based SACs design. Volcano plots for (b) overpotential (η), (c) onset potential 

4 (Vonset), and (d) Faraday efficiency (FE) based on the descriptor for SACs embedded in nitrogen-

5 doped graphene supports. This indicates two definitive volcanoes in the plot for overpotential with 

6 Ti and Co located at the summits. Also, for the onset potential and Faraday efficiency, Co is in the 

7 summit of volcanoes with better CO2RR performance. Reproduced with permission from ref.180, 

8 copyright 2019, Wiley-VCH.
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