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Abstract: Chemical and catalytic upcycling processes could help realize a circular plastics economy, but current 
models for testing mechanistic hypotheses and designing catalysts remain primitive.  This work shows how proposed 
catalytic mechanisms can be incorporated into population balance models to predict the time evolution of molecular 
weight distributions. We develop models for homogeneous and heterogeneous catalysts, including catalysts that cut 
at chain ends and catalysts that cut at random locations. For heterogeneous catalysts, we illustrate the effect of 
adsorption constants that depend on polymer chain length. We discuss ongoing efforts and challenges in measuring 
and modeling the time evolving molecular weight distributions in polymer upcycling processes. 

I. Introduction
Millions of tons of plastic are produced each 

year.  Most is discarded in landfills, lost to the natural 
environment, or incinerated.1 Polymer upcycling 
efforts aim to transform plastics into value-added 
products.2 In its broadest definition, polymer 
upcycling includes a variety of strategies: producing 
novel composites3, use of functionalization4 and 
compatibilizers5, conversion to carbon materials 
(nanosheets, nanotubes, etc.)6, and selective 
degradation to fuels, lubricants, etc.7 For this work, 
we focus primarily on upcycling via selective catalytic 
degradation.  

Before polymer upcycling technologies can be 
implemented, challenges in plastics collection and 
sorting, process design, and catalyst development 
must be addressed.6, 8-11  Catalyst development for 
polymer upcycling is complicated by some 
particularly unique challenges.12-16  First, the starting 
reactants in polymer upcycling are a jumble of 
polymers with many different molecular weights. 
Second, the process involves thousands of 
intermediates all being consumed and generated en 
route to products. Third, if things go badly, the 
process may yield multiphase mixtures containing 
hundreds or thousands of different products.  

Because so many species are involved, we cannot 
use the familiar “initial rates” or “integrated rate law” 
analyses for small molecule reactions.17  Moreover, 

experiments cannot monitor the rates at which each 
product is formed.  They can monitor time-evolving 
molecular weight distributions (MWDs) by sampling 
reactions at various time points, e.g. with 
chromatographic or spectrographic methods.13, 18-20   

Many experimental studies have reported the 
number average and/or weight-average molecular 
weight. Across multiple studies, with entirely 
different catalysts, polymers, and reaction conditions, 
the results show a fast initial drop in molecular weight 
with slower and slower decreases in molecular weight 
at long times.7, 12, 17, 21 These results could be due to 
catalyst deactivation or to length-dependent 
selectivity.21 Zhang et al. provided a quantitative 
model to help explain these results.12 In brief, 
cleavage of long polymers at early times results in a 
massive reduction of molecular weight, but as 
depolymerization proceeds there are more chains to 
cut and each cut results in a smaller reduction of 
molecular weight.  In the model of Zhang et al., the 
rate of cutting was also affected by product 
inhibition.12

Here we further simplify the model from Zhang 
et al.12 Let N0 be the initial number of molecules and 
let r(t) be the rate of cleavage events per unit time.  
Each cleavage event increases the number of 
molecules by one, and so the total mass is gradually 
distributed across an increasing number of molecules.  
Using only the definitions of the average molecular 
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weight MN, with no further assumptions, it can be 
shown that the number average molecular weight 
declines with time (t) as22

(2)
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Equation (2) holds regardless of how, which, or where 
polymers are cleaved. The result is always an MN(t) vs. 
t curve with approximately the same shape, whether 
chains are cut by hydrogenolysis12, 21, 23, 24 or tandem 
metathesis/chain isomerization7, 18, longest chains 
first or shortest chains first,25 at the chain ends26, 27 or 
at random locations along the chain,28-30 etc. It also 
applies to linear or branched polymers. In this sense, 
eq. (2) is a universal feature of depolymerization. 
Equation (2) also provides a simple way to extract a 
cleavage rate (cuts per time) from data, and (given 
the amount of catalyst) to obtain a quantitative 
catalyst activity, for example from r(t) divided by the 
number of catalyst sites. Because of its generality, it 
enables activity comparisons across different 
catalysts and different polymer chemistries.

Despite the utility of equation (2), the fact that all 
catalysts, mechanisms, and polymers lead to a similar 
MN vs. t curve limits its value as a tool for identifying 
the underlying mechanism.  Additional information, 
like weight-average molecular weight vs time data 
can be used to construct the polydispersity as a 
function of time, but this has a similarly mechanism-
agnostic shape for similar reasons. Moreover, MW 
primarily reflects the longest chains and thus provides 
limited information about small reaction products.  
Mechanistic studies require more detailed models 
that can predict both the product distribution and the 
entire MWD as a function of time.  

The widely-used bottom-up strategy for 
modeling catalytic processes starts from molecular 
mechanistic hypotheses, ab initio calculations, 
microkinetic modeling, and ultimately predicts the 
product formation kinetics, reaction orders, 
activation parameters, etc.31-33  Bottom-up models 
have successfully predicted kinetics and MWDs in 
some polymerizations, and the bottom-up strategy 
may also be successful for polymer upcycling.34-36  
However, polymer upcycling by a heterogeneous 
catalyst involves polymer adsorption at sites, 
surfaces, or pores, in conjunction with multistep 
reactions involving many rate constants.  With so 
many parameters to compute, errors in the quantum 
chemistry, force fields, or adsorption models may 

impair the predictions even if the hypothesized 
upcycling mechanisms are correct.  

An alternative approach is to construct 
phenomenological kinetic models based on specific 
mechanistic hypotheses and test them against 
experimental data.37-40 This can be done with 
deterministic rate equations or kinetic Monte Carlo41, 
c.f. studies of long-chain vs. short-chain selectivity 
and product distributions from selectivity for 
different cleavage locations.21, 42-45 Note that, even at 
the lab scale, experiments begin with upwards of 
billions of chains.  Therefore the stochastic simulation 
results (if converged) should match the predictions of  
the corresponding deterministic rate laws46 and 
(when they can be solved) the deterministic models 
are more easily fitted to quantitatively extract rate 
parameters from experimental data.47 

What types of deterministic kinetic models can 
predict MWDs for depolymerization?  Kinetic lumping 
models48, 49 predict the rates at which groups or 
“lumps” are consumed and generated, e.g. the 
reactants and products may be lumped into gases, 
liquids, and wax fractions.  Recent work by Wu et al.25 
takes this direction.  

Population balance equations (PBEs) go a step 
further, predicting the entire evolving MWD.39  This 
work shows how, without specifying the mechanism 
at the most detailed level of elementary steps, we can 
already categorize upcycling mechanisms into a few 
“motifs” and construct the appropriate PBE.  For 
constructing population balance models, most 
catalytic depolymerization processes will fit into one 
of sixteen categories.  
 A catalyst may be homogeneous or 

heterogeneous.21, 50

 It may operate processively or non-
processively.51, 52

 It may cleave chains near their ends or at random 
locations along the chain.13, 21

 The polymers themselves may be dissolved in a 
solvent or a liquid melt with no solvent.44, 45

Each category gives a different population balance 
model, different solutions for the molecular weight 
evolution in time, and a different interpretation for 
the kinetic parameters. Each upcycling strategy 
implies a specific type of PBE with solutions that 
predict characteristic “signatures” of the mechanistic 
motif.  Our goal is to discover easily identified 
signatures that can help to identify the underlying 
mechanism.  

In constructing the population balance model, 
note that polymer fillers and even chemically inert 
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particles in a composite may add new scission 
pathways.  For example, they may change the 
importance of mass transfer and/or increase levels of 
shear induced mechanical chain scission.  In some 
cases, the observed behavior is a combination of 
multiple mechanisms. Some processes employ 
“tandem” catalysts to combine advantages of the 
individual catalyst mechanism categories.7, 18, 45, 53 We 
restrict ourselves here to ideal cases with single 
mechanisms.

In the following sections, we illustrate the 
predicted molecular weight evolution for the 
proposed mechanisms in several upcycling strategies.  
Each calculation starts from a lognormal MWD with 
MN(0) = 3.0kDa and MW(0) = 3.3kDa.  First, in section 
II, we define a dimensionless time scale that helps to 
place the molecular weight evolution on a 
commensurate time scale regardless of the 
mechanism, the rate parameters, and their absolute 
sizes.

II. Activity comparisons
The mechanisms we discuss in this work span a 

range of conditions, catalyst concentrations, and 
reaction orders.  Accordingly, the absolute time t is 
often inconvenient for comparing them.  As 
previously noted by Helfferich, there is no universal 
way to nondimensionalize the rate equations that 
emerge from different mechanisms.54  To allow 
comparison between mechanisms after a similar 
number of cleavage events, we invoke a 
dimensionless “cut time” τ. τ is the equivalent of the 
integral in equation (2), and may be alternatively 
written based on the number of newly created 
molecules in the population:

(3)
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where ρ(n,t) is the continuous concentration of 
polymers of length n, i.e. the count per unit volume 
of chains with length between n and n+dn. All models 
considered in this work exclude recombination, so 
each cleavage reaction creates one new chain.  

III. Homogeneous mechanisms

We begin our discussion of mechanistic motifs 
for homogeneous reactions (catalytic or not) of the 
form 

(4)k
n n m mC C C 

where Cn is an arbitrary polymer with n repeat units 
and k is the pseudo-elementary rate constant.  
Models for the kinetics of these reactions have been 
used to describe radical depolymerization55, thermal 
degradation40, 56, and radiation-induced 
degradation57, among others.25, 58, 59 

III.1 Random cleavage
Random cleavage usually refers to any process in 

which all bonds are equally likely to be cut, although 
nonuniform cases have also been studied.60 An 
schematic of random cleavage for a single starting 
chain is shown in Figure 1.  Examples of polymer 
upcycling strategies based on this method include an 
aminolysis process for polyesters61 and homogeneous 
cross alkane metathesis schemes based on work of 
Goldman and Brookhart.62

Figure 1 Illustrating homogeneous random cleavage. Circles 
represent monomers in a large polymer. Long chains are 
repeatedly broken into smaller chains, with each cleavage 
site marked with a red X.

A kinetic model may be constructed by 
considering polymer length as a discrete or 
continuous quantity. Discrete models are (in 
principle) more accurate because the number of 
monomers is countable.  However,  continuous 
models tend to be more mathematically convenient 
for large chains, so we focus on models with a 
continuous chain length here.63 We borrow the 
continuous formulation of Staggs to account for 
cleavage steps:64

(5)
   ,

( , ) 2 ,
d n t

kn n t k m t dm
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Equation (4) describes the change in ρ(n,t), i.e. 
the population of chains of length n at time t, as n-
mers are cut to form smaller species and as larger 
chains are cut to form n-mers. As an n-mer possesses 
approximately n bonds that can break independently, 
the first term is weighted by that length. The 
integrand is likewise weighted by m, but the 
probability of cutting an m-mer to an n-mer is 
2m-1dm. The overall timescale of the process is 
determined by k, which in this case is an effective first 
order rate constant with units of cuts per time per 
bond.

The simplicity of this model makes it amenable to 
analytic and numerical solutions, and we direct the 
reader to the existing literature for a more detailed 
discussion of those solutions29, 30, 65, 66. The time 
evolution for homogeneous random cleavage is 
shown below in Figure 2.

Figure 2 Time evolution of the MWD for homogeneous 
random cleavage. Each line denotes the MWD at a point in 
rescaled time τ, with τ = 0 (purple) the initial distribution. 
Lines are evenly spaced in τ, with ∆τ = 0.3.

Homogeneous random cleavage manifests as a 
rising plateau, particularly among small species that 
are not present in the initial distribution. As 
depolymerization proceeds, the plateau grows 
narrower due to the preferential cutting of the 
longest chains, and taller, as further cuts increase the 
number of small fragments.

Homogeneous random cleavage quickly 
generates all possible chain lengths, from monomer 
to the largest initial chain. This rapid accumulation of 
small chain lengths can cause a rapid initial increase 
in the dispersity of the population, as shown in figure 
3.

Figure 3 Plot of number average chain length (MN, solid 
blue), weight average chain length (MW, dashed blue), and 
dispersity (Đ = MW/MN, dotted red) for homogeneous 
random cleavage as shown in fig. 2.

As random cleavage quickly generates lengths 
that were not part of the initial MWD, dispersity will 
rapidly increase. At later stages, long chains will be 
depleted, and the dispersity will eventually decrease 
again. In principle, at infinite time, all bonds will be 
cleaved, and all polymers will be transformed to 
monomer, with MN = MW = Đ = 1. An analysis of the 
moments of the MWD for homogeneous random 
cleavage processes has been given by McCoy and 
Madras.60

III.2 Non-processive chain-end scission
These mechanisms remove a fixed-size oligomer 

or monomer from an end of a polymer chain. Such 
behavior is common in biological systems, e.g. β-
amylase depolymerizes large, polymeric starches 
(blood sugar) into glucose by hydrolyzing glucosidic 
linkages.67 An example upcycling process based on 
this mechanism is the tandem chain migration + olefin 
metathesis scheme proposed by Guironnet and 
Peters.18 An illustration of this mechanistic motif is 
shown in Figure 4.  
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Figure 4 Illustration of a chain-end cleavage process. Circles 
represent monomers in a large polymer. With each cleavage 
reaction, marked by a red X, a monomer is removed from 
the end of the chain.

The discrete nature of the cuts make fully 
continuous formulations difficult, and in most cases 
the smallest species must be explicitly modeled.63, 68  
Zeman and Amundson developed tools to model 
chain length as a continuous variable, with a simple 
pseudo-elementary rate constant k, and with the 
monomer concentration separately determined by 
conservation of mass.18, 69  The balance equation at 
the continuum population level for chain-end 
cleavage in homogeneous solution is:26

(6)
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The required number of terms for the continuous 
treatment to be valid depends on the smoothness 
and broadness of the polymer distribution. Typically, 
the second derivative term (i=2) is sufficient.26 
Because cuts are always made at the end of a chain, 
the rate constant k is first order in chains rather than 
bonds. Guironnet and Peters have shown how the 
appropriate pseudo-elementary rate constant k can 
be derived from more detailed kinetic schemes.18  The 
monomers and long chain populations must both be 
considered when computing the number and weight 
averages.  The time evolution for a chain-end scission 
process is shown in Figure 5.

Figure 5 Time evolution the MWD by homogeneous chain-
end cleavage. Monomer concentration is not shown to 
prevent distortion of the vertical axis. Lines are evenly 
spaced in τ, with ∆τ = 200.

Chain-end scission results in a gradual 
broadening and translation of the MWD towards 
lower chain lengths. The rate of this broadening and 
translation depends on the initial width of the MWD 
and the size of the fragment removed. Systems that 
cleave variable length oligomers will give faster 
broadening than systems that cleave the same 
fragment each time.18  When viewed on a log-n scale, 
this broadening does result in a rising plateau like that 
of homogeneous random scission (fig. 2). However, 
and the initial MWD gradually shifts leftward from 
chain-end scission, while the initial MWD is 
decimated after orders of magnitude fewer random 
cleavage steps. In this sense, random cleavage is 
more efficient at rapidly altering the MWD than 
chain-end cleavage.

Unlike random cleavage, there is typically a clear 
demarcation between volatile and nonvolatile 
products in chain-end cleavage, particularly when the 
initial distribution is primarily long polymer chains.70   
An easy separation between products and long 
polymers may have practical reaction engineering 
advantages at the process design stage.  However, it 
can create difficulties for data analysis in bench-scale 
experiments.  Discarding the  small molecule products 
when characterizing the MWD will affect the 
results.70 Procedures that include vs. exclude the very 
small fragments produced by chain-end scission can 
give very different trends in MN, MW, and Đ, as shown 
in Figure 6. 
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Figure 6 Plot of number average chain length (MN, solid 
blue), weight average chain length (MW, dashed blue), and 
dispersity (Đ = MW/MN, dotted red) for the population 
evolution in fig. 2. Note the large difference in dispersity 
scale between plots. (a) Small molecule products are not 
counted, and (b) small molecule products are counted when 
calculating averages and dispersity. 

With the simplest cases of random and chain-end 
scission discussed, it is important to note that many 
processes are in fact combinations of the two.30, 56, 71 
38, 68, 72, 73  For example, in the polysaccharide/amylase 
system, there are three classes of enzymes that work 
together to depolymerize starches: α-amylase 
catalyzes random cleavage, while β- and γ-amylase 
catalyze chain-end cleavage.74-76 The relative 
concentration and activity of these amylases can 
dramatically alter the evolution of the MWD.77, 78 A 
single catalyst that targets bonds at random, may also 
have a significant chain-end scission preference due 
to different chemistries at chain ends.40 

IV. Heterogeneous mechanisms
We now focus on models for polymer upcycling 

by heterogeneous catalysts.  Heterogeneous catalytic 
mechanisms introduce additional theoretical 

difficulties.  In particular, one must consider the bulk 
MWD and the distribution of molecular weights for 
adsorbed polymers.47 Long chains and short chains 
compete for adsorption sites on the surface, with 
preferential adsorption determined by the loss of 
entropy upon adsorption and enthalpic interactions 
that (in some cases) favor adsorption.79, 80  We 
address two regimes in this work: a polymer melt in 
which a polymer in the bulk is surrounded by like 
polymers, and a dilute solution in which the polymer 
in the bulk primarily interacts with a solvent.  In both 
cases, we utilize quasi-equilibrium adsorption 
models.  The models will be inaccurate if the reaction 
is too fast for polymer conformations in the interfacial 
layer to relax to a local conformational equilibrium, or 
if boundary layer transport (where applicable) is too 
slow to maintain an equilibrium with the bulk.  

IV.1 Random cleavage at melt-catalyst interface
In this section we consider a polymer melt in 

contact with a heterogeneous catalyst that cleaves 
chains at random locations.  A schematic for this case 
is shown in Figure 7.  Examples of catalysts that likely 
work via this mechanism include hydrogenolysis by 
Ru/C43 and Ru/TiO2

42, tandem hydrogenolysis and 
aromatization on Pt/γ-Al2O3

12, and melt 
hydroconversion by Pt/WO3/ZrO2

81
.

Figure 7 For a polymer melt in contact with a heterogeneous 
catalyst, only bonds within the layer near the catalyst (red 
dashes) can be cleaved. Enthalpy is largely irrelevant for 
adsorption because all surface sites will be in contact with 
portions of some chemically similar chain.  Preferential 
adsorption of small chains may occur because the 
conformational entropy loss upon adsorption is smaller for 
small chains.  
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         In a melt, the entire catalyst surface is in contact 
with polymers, but the contacts may be segments 
from chains with different lengths. Therefore, we 
define a surface coverage such that the fraction of all 
catalytic sites occupied by segments of an n-mer is 
given by θ(n). Because the surface must be covered 
entirely, ∫θ(n)dn = 1. The MWD of the adsorbed 
chains may deviate from the MWD of chains in the 
bulk.  We may account for this nonideality by writing

(7)
     

   

ideal excess

ideal bulk

n n n

n n
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 
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where the ideal surface coverage of a species is given 
by the bulk volume fraction of that species ϕbulk. A 
model for the surface excess was given by Van der 
Gucht et al. as

(8) ( ) / ( ) 1 /excess bulk
Wn n A n M   

where A is a constant related to the enthalpic and 
entropic differences experienced by chain ends 
relative to an internal monomer.82 A is determined 
jointly by the surface, polymer end, and polymer 
backbone chemistries.  A > 0 indicates a surface that 
is attractive to small chains, either due to favorable 
enthalpic effects of the chain-end chemistry being 
proportionally larger for smaller chains, or due to the 
lesser entropic penalty for confining small chains at 
the surface.

If we assume quasi-equilibrated coverages, then 
the fraction of the surface covered by n-mers is

(9)
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In formulating equation (9) we have ignored excess 
mixing volumes by assuming that, for each n, n(n,t) 
is proportional to the bulk volume fraction bulk(n).  
Now the bulk MWD changes in response to the 
equilibrium adsorption and kinetics of scission as 

(10)     
, 1, 2 ,

n

d n t
r n t r m t dm

dt m


 


  
where r is the effective rate of depolymerization, 
per eq. (2).

Equation (10) parallels the result for 
homogeneous random scission, equation (5), except 
the surface coverage θ allows the dependence on 
chain length to be more complex.  In homogeneous 
random scission, the polymer reactivity is 
proportional to the number of bonds in the chain (eq. 
(5)). Non-zero values of parameter A lead to length-
dependent adsorption and to a length-dependent 
cleavage selectivity that deviates from the bulk 
volume fractions.  For example, when A < 0, long 
chains are favored to adsorb and cleave. When A > 0, 
short chains are preferentially favored.  The 
preferential adsorption relative to the bulk 
populations is shown in figure 8 for a series of 
different A values.  

Figure 8 Surface coverage (eq. (9)) for varying surface 
segregation parameter A, for the initial distribution shown 
in fig. 2. Red denotes a long-chain favored surface; blue 
denotes a short-chain favored surface. The bulk mass 
fraction for all cases is equal to the surface coverage for the 
non-interacting surface (black).

If products of an intermediate molecular weight 
are desired, e.g. in hydrogenolysis of polyethylene, 
the catalyst should be designed such that A < 0 if 
possible.  If A > 0 instead, then long chains will be 
excluded from the surface, causing the short chains to 
be repeatedly cut and resulting in a mixture with large 
fractions of over-hydrogenolysis products (like 
methane) and uncut chains.  Figure 9 shows that, 
according to equations (8) and (9), the MWD evolves 
in a manner like that for homogeneous random 
scission.  Figure 9 shows the dependence on 
parameter A by plotting solutions for A = -1.0 and 
A = +1.0. 
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Figure 9  Time evolution of the MWD for random-cleavage 
at a melt-catalyst interface. Black line denotes initial 
polymer population. Red denotes a long chain favoring 
surface (A = -1), dashed blue denotes a short chain favoring 
surface (A = +1), per fig. 8. Lines are evenly spaced in τ, with 
∆τ = 0.5.

As in section III, we may also consider the 
dispersity of the resulting polymer. This is 
demonstrated in Figure 10. Surfaces that favor the 
adsorption of longer species (A < 0) result in a less 
disperse polymer product relative to the 
homogeneous case shown in figure 3. Short chain 
favoring surfaces (A > 0) do exactly the opposite, with 
an increase in dispersity. 

Figure 10 Dispersity for melt-surface random scission. 
Dashed black line denotes the homogeneous case (A = 0, fig. 
3). Red denotes a long chain favoring surface (A < 0), blue 
denotes a short chain favoring surface (A > 0), per fig. 8. 
Lines are evenly spaced in A, with ∆A = 0.2. 

In the melt, where enthalpic driving forces largely 
cancel with those of other chemically similar chains, 
the value of A will be largely determined by entropic 
factors.  Long chains lose more conformational 

entropy upon adsorption to a flat surface than short 
chains, so catalysts that present a flat interface to the 
melt may lead to the situation with A > 0.42-45, 83   It 
may be possible to tune the value of A (and the 
product distribution) by altering the chemistry of the 
chain ends to disfavor the surface or to design special 
pore geometries that favor adsorption of long chains 
as done by Tennakoon et al. and Wu et al.13, 25 

Note that the surface segregation model of Van 
der Gucht et al. breaks down for very large polymers 
in highly polydisperse melts. For positive A, i.e. a 
surface that preferentially adsorbs smaller polymers, 
there may even be chains for which 1+A(1-n/MW) is 
negative. According to this linear relationship, these 
extremely long chains are entirely unreactive, kept 
away from the surface by the abundance of shorter 
chains. These chains will not become reactive with 
the passage of time, as depolymerization can only 
decrease the average chain length. The possibility of 
a nonreactive set of very large chains must be 
considered when using these equations with very 
large maximum chain lengths nmax, or very small 
average chain lengths MW.  When generating Figures 
9 and 10, we replaced any negative values of (n,t)<0 
with (n,t) = 0.  Further development of preferential 
adsorption models would be a useful direction.  Note 
that the ideal and excess coverages in equation (7) 
are additive, in contrast to activity models where non-
ideality is included via a multiplicative activity 
coefficient. It would be useful in future work to 
develop models which automatically satisfy the 
proper asymptotes in the long chain and dilute limits, 
like regular solution models84 and Margules models85.  

IV.2 Solute-surface random scission
Now we consider heterogeneous catalytic 

cleavage of polymers that are dissolved in solution. In 
this case, the surface is no longer guaranteed contact 
with  polymers, and this necessitates a more 
complicated handling of the surface-polymer 
interactions and adsorption.86-89 We assume that 
polymer chains adsorb to a reactive surface from 
solution and proceed to either desorb back to the 
bulk or react, as shown in Figure 11. As an examples 
of this type of system, Ellis et al. considered a SnPt/γ-
Al2O3 and Re2O7/γ-Al2O3 system with n-pentane 
solvent.45

Again, we assume well-mixed conditions where 
coverages are quasi-equilibrated with the bulk 
polymer concentrations.  Note that this assumption 
may be lifted using standard techniques for treating 
exterior transport limitations. Namely, one would 
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replace the bulk populations in the models below 
with unknown populations near the catalyst surface 
and equate the resulting rates to the rate of chain 
transport from the bulk through a boundary layer to 
the surface.  External mass transport models are 
currently under development.    

  

Figure 11 Illustration of solute-surface random scission. (a) 
Long chains adsorb to the surface from the bulk. (b) The 
adsorbed chain is irreversibly cut into two or more smaller 
fragments. (c) Smaller fragments desorb back to the bulk or 
remain on the surface for further scission. Adsorption and 
desorption steps (a) and (c) are assumed to be reversible 
and quasi-equilibrated.

To build the PBE, we again consider the fractional 
surface coverage θ(n) representing the fraction of 
sites in contact with segments from an n-mer. The 
bulk MWD evolves as in the melt-surface case, by the 
same PBE as that in equation (9).  The difference lies 
in the isotherms for the bulk-surface coverage 
relationship.  To determine θ(n) in this case, we 
invoke a common multi-site generalization of the 
Langmuir isotherm90:

(11)     0, , ns
n ns K n t n t t  

Here sn is the average number of catalytic sites 
occupied by an n-mer, Kn is a length dependent 
equilibrium constant, and 0(t) is the fraction of 
unoccupied sites, i.e. 0(t) = 1-∫(n,t)dn where the 
integration bounds are from n = 1 to ∞. We split the 
free energy within the equilibrium constant into an 
entropic component (assumed constant) and a per-
adsorbed site enthalpic component

(12) expn e ads n adsK k H s T S   

where ke is a constant prefactor with units of inverse 
concentration, like a standard reference volume. We 
assume here that the entropic and enthalpic terms 
are independent of the changing composition of the 
solution. Given another layer of theory that connects 
the composition to the adsorption energies, a time- 
or composition-dependent Kn may be incorporated 
into the model. We leave this development for future 
work.

Multiplying both sides of equation (11) by 0(t)sn, and 
integrating both sides from n = 1 to ∞ yields a single 
equation for the fraction of empty sites: 

(13)     0 0
1

1 , ns
n nt s K n t t dn  



  

At the initial time step, the fraction of empty sites 
may be solved to a tight error tolerance for the initial 
coverages of adsorbed polymers, and then included 
in the system of differential equations to compute 
changes in coverage over the integration period. 
Differentiation of equation (13) and rearrangement 
yields

(14)
 

   
0

0
12

01 ,

n

n

s
n n

s
n n

ds K t dnd dt
dt s K t n t dn


 









Unlike previous models discussed in this work, eqs. 
(11)-(14) depend on the total concentration N0. As the 
total concentration of chains rises, the surface 
becomes more occupied. While this effect does 
impact the evolving MWD, the contribution is minor 
relative to that of the adsorption energetics. We focus 
here on the convenient case where keN0=1.

When integrating forward in time, only one 
nonlinear solution needs to be computed at the first 
step. From the computed fraction of empty sites, the 
individual species coverages may be estimated and 
interpolated by equation (11). The change in the 
population for the current timestep follows from 
equation (10), and equation (14) then also predicts 
the revised fraction of empty sites.

Solute-surface adsorption behavior can cause 
drastic departures from the prior cases. The form of 
equation (11) reveals that the primary factor 
controlling a species surface coverage is the number 
of sites it demands. Polymer adsorption theories 
suggest that the preferred number of contacts 

Page 9 of 16 Journal of Materials Chemistry A



10

between a polymer and a surface scales roughly as 
n1/2.91-94 Based on this, and the fact that an adsorbed 
monomer should have one contact with the surface, 
(s1 = 1) we perform calculations for

(15)ns n

such that a monomer occupies one site. Then, the 
adsorption energetics may be varied. We initially 
consider the surface coverage in quasi-equilibrium 
with the initial polymer population, relative to the 
bulk population, by analogy to Figure 8, in Figure 12.

Figure 12 Relative preferential adsorption for quasi-
equilibrated bulk polymer 𝜌  (lognormal MWD with 
MN(0) = 3.0 kDa and MW(0) = 3.3 kDa, keN0 = 1) and surface 
𝜃. Positive numbers (red) denote long chains are preferred 
for adsorption. Negative numbers (blue) denote short 
chains are preferred for adsorption.

Figure 12 reveals that this model, like the melt-
surface case, may prefer either long or short chains 
depending on the energetics of adsorption. This 
preference is primarily driven by the constant 
entropic penalty for adsorption. When this penalty is 
strong, large chains are preferred, as they adsorb to 
multiple sites and thus have a greater enthalpy of 
adsorption. When this penalty is weak, small chains 
are preferred, as they demand fewer sites each to 
adsorb and do not require a large enthalpy to offset 
the entropic penalty.

Preferential adsorption strongly impacts the 
evolving MWD as cleavage proceeds. Minor 
differences in the behavior of the initial distribution 
may be magnified as polymers are cleaved and the 
MWD evolves. We demonstrate this in Figure 13, as 
small adjustments to the adsorption enthalpy drive 
significant changes in the product distribution. 
According to the model, solute-surface random 

scission creates significant amounts of small products 
(n = 1~100).  Therefore, we show the mass-weighted 
MWD, n𝜌(n,t), to highlight the differences between 
distributions.

Figure 13 Time evolution of the mass-weighted MWD by 
solute-surface random cleavage for varying per-site 
enthalpy of adsorption. ∆H and T∆S in kbT units, keN0 = 1. 
Lines are evenly spaced in τ, with ∆τ = 0.3. Arrows denote 
the length of the product species with the greatest mass 
fraction at ∆τ = 3. 

As the system evolves, it develops a new peak in 
the mass-weighted MWD that represents the primary 
product size by mass. The size of the primary product 
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is associated with both the site-dependent ∆H and 
site-independent T∆S parameters. At fixed 
conversion, smaller values of ∆H and/or T∆S cause 
the primary product size to decrease, approximately 
correlated with the initial preference shown in fig. 12. 
Increased conversion will also decrease the primary 
product size. 

When adsorption strongly favors small species a 
bimodal distribution may arise, with the primary 
product coexisting with the initial distribution, even 
at high conversion (fig. 13, bottom). After the first few 
catalytic turnovers, the products of cleaving the 
initial, large polymers preferentially adsorb. The 
products of their cleavage in turn are preferentially 
adsorbed, and so on, creating an abundance of small 
molecular weight products.

V. Conclusions
Population balance models have long been a 

powerful tool to predict product distributions for 
both polymerization and depolymerization processes, 
but most research has focused on the simplest of 
problems for which analytical solutions exist. Here we 
have demonstrated the beginnings of a framework to 
translate specific mechanistic proposals into 
population balance models.  The population balance 
models then yield specific predictions about the 
molecular weight evolution.  We have developed 
models for a variety of processes and mechanisms.  
Each mechanism and its corresponding population 
balance model predicts “fingerprints” in the 
molecular weight evolution by which an observed 
behavior may be matched to an appropriate 
underlying mechanism.    Efforts are underway to fit 
these models to experimental data as a quantitative 
way of mechanism identification.   
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