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Metal dioxo chemistry and its diverse reactivity are presented with an emphasis on the mechanisms of reactivity. Work from
approximately the last decade is surveyed and organized by metal. In particular, the chemistry of cis-dioxo metal complexes
is discussed at length. Reactions are grouped by generic types, including addition across a metal oxo bond, oxygen atom

transfer, and radical atom transfer reactions. Attention is given to advances in deoxygenation chemistry, oxidation

chemistry, and reductive transformations.

Introduction

Interest in metal dioxos can be traced to the seminal work of
early bioinorganic chemists and their attempts to mimic the
vast reactivity spanned by enzymatic systems. A central theme
of this early work is the oxygen atom transfer properties of
molybdenum- and tungsten-containing active sites in
enzymes.? Deeper understanding of reactivity in these
enzymes led to the inception of molecular metal dioxos and a
rich field of reactivity. While oxygen atom transfer remains
critical to the reactivity of metal dioxos, other modes of
reactivity have emerged and continue to be explored. Among
these, addition across a metal oxo bond and radical atom
transfer to or from a metal oxo have developed alongside the
continuing progress in oxygen atom transfer reactivity.

Themes in Reactivity

Current metal dioxo chemistry can be broken down into three
reaction types: oxygen atom transfer (OAT) facilitated by atom
abstraction, atom transfer featuring bond homolysis, and
heterolytic addition of bonds across a metal oxo functionality
(Scheme 1).
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Scheme 1: Three primary modes of reactivity in metal dioxos.
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Among the most prominent reactivity in metal dioxos is the
addition of a polarized ¢ bond across one of the metal oxo
multiple bonds. The vast majority of metal dioxo complexes
feature a high oxidation state metal center that can still function
as redox active catalysts. In this way, the metal oxo bond
functions analogously to a low valent transition metal atom
during oxidative additions; the electrons from the metal oxo it
bond are distributed among new bonds between M-A and M-O-
X (Scheme 1). Following addition, several reactivities are
observed: insertion into the M-A bond, homolysis of the O-X
bond, or further reactivity such as deprotonation.

High oxidation state metal dioxos are also shown to stabilize
radical character at the oxygen atom leading to both radical
atom transfer to and from the metal oxo bond. Notably, metal
dioxos serve as competent hydrogen atom acceptors to drive C-
H activation by forming new MO-H bonds. Radical generation
from metal oxo MO-C bonds has also been utilized to form
organic radical fragments that couple following homolytic
cleavage of the MO-C bond.

Despite their electron deficiency, metal dioxos commonly
catalyze reduction reactions. Reactivity of this type may be
driven by oxygen atom transfer. Phosphines are common OAT
agents and reduce metal centers by accepting one or more
oxygen atoms. The reduced metal center afforded by OAT to
phosphine may then participate in redox catalysis, often
deoxygenating and thereby reducing substrates. These
mechanisms are common in dehydration and deoxydehydration
reactions where metal dioxos transfer oxygen atoms from
substrates to terminal reductants like phosphines.

Consistent interest in metal oxos has yielded numerous
reviews of both broad and narrow scope, emphasizing the
importance of metal dioxo reactivities. The focus of this
perspective will be reports of cis metal dioxo complexes
published since 2010. Below, we survey the recent literature
organized by the identity of the metal. Additionally, reactivity in
metal dioxos is sorted by the following generic reaction types:
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bond making, bond breaking, oxygen atom transfer, and
deoxygenation of substrates. All reactivity described here
features at least one of the mechanisms described in Scheme 1.

Discussion

Generally, for the cases discussed here, bond making
reactions involve C-C, C-P, and C-N bond formation. Bond
breaking reactions are largely C-H activation. And finally,

deoxygenation reactions include dehydration,
deoxydehydration, and direction reduction of carbonyl
moieties.
Vanadium

Historically, the vanadyl ion (VOy) has been used for a
variety of chemistries, most notably in redox flow batteries?
Here we discuss reactivity in molecular cis-dioxo V(V) complexes
reported in recent literature.

Bond Making. Complex 1 catalyzes the reductive coupling of alcohols
using the substrate as reductant and coupling partner (Scheme 2).4
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Scheme 2.

The vanadium dioxo complex catalyzes the deoxygenation
of allylic and benzylic alcohols to their corresponding radicals.
Radical recombination gives the coupled alkane. Notably, when
fluorene is present during the reaction hydrogen atom transfer
(net reduction by two protons and two electrons) takes place,
preventing radical coupling of substrate. The fluorene radical
resulting from hydrogen atom abstraction also serves as a
competent radical coupling partner and results in a statistical
mixture of alkane products.® Density functional theory (DFT)
calculations support a mechanism where hydrogen transfer
from the substrate reduces 1 to a V(lll) oxo-aquo complex. The
V(Ill) oxo-aquo complex generates two equivalents of substrate
radical. Catalysis may occur through multiple pathways
involving V(IIl) and V(IV) species and reoxidation of these
posited to occur by
disproportionation of two V(IV) species or between a V(V) and
V(Ill) species.

Bond Breaking.

Vanadium dioxos and their related vanadium oxo-peroxo
complexes are active towards hydrogen atom abstraction (eg.
Scheme 1, generic “Atom Transfer” reaction). Mayer and
coworkers reported the ability of [(*Buy-bpy),VO,]* to slowly
activate weak C-H and O-H bonds. ® The group independently
synthesized the oxo-peroxo complex, [(Buy-bpy),VO(0,)]*, by
exposing the known oxo-hydroxo complex, [(*Bu,-bpy),VOOH]*
to air in tetrahydrofuran, which gave nearly quantitative yields
over a matter of days.” [(*Bu,-bpy),VO(0,)]* activates weak O-H

vanadium intermediates s

2 | J. Name., 2012, 00, 1-3

bonds in hydroquinone and TEMPOH but is significantly less
reactive than the dioxo complex [(*Bu,-bpy),VO,]*.

Warren and coworkers investigated the enhancement of
this reported C-H activation in the dioxo and oxo-peroxo
vanadium complexes under broadband UV-visible irradiation. &
A ligand-to-metal charge transfer (LMCT) generates a charge-
separated radical with an estimated 2 V reduction potential for
the dioxo vanadium complex ['Bu,-bpy),V0,]*, initiating C-H
activation and generation of organic radicals. Activation of weak
C-H bonds is observed for both [(*Bu,-bpy),VO,]* and [('Buy-
bpy),VO(0,)]* in aerobic conditions suggesting a common
catalytic intermediate between the dioxo and oxo-peroxo
complexes.

Other examples of vanadium dioxo C-H activation are
reported in a series of complexes bearing scorpionate ligands.®
Carboxylation of the gaseous alkanes methane and ethane was
achieved using peroxydisulfates whereas hydroxylation of the
liquid alkanes cyclopentane employed
hydrogen peroxide as the terminal oxidant.

cyclohexane and

While not explicitly a monometallic dioxo complex, another
notable example of C-H activation by V-O bonds has been
reported by Liu and coworkers.l®1?2 In these reports, the
vanadium oxo source is a precatalyst. The active form of the
catalyst is believed to be a vanadium oxo bridged dimer bearing
terminal sulfate groups. The coordination of the sulfates to the
vanadium center stabilizes radical character at the sulfur
oxygen bond upon electrochemical oxidation. DFT calculations
suggest rapid hydrogen atom abstraction from methane
following electrochemical oxidation. While the vanadium oxo
bond is not directly involved in substrate oxidation, these
results present a unique reactivity undoubtedly enabled by
radical stabilization by the vanadium oxo moiety. Later reports
by Liu and coworkers suggest titanium and chromium oxos may
afford similar reactivity, stabilizing electrochemically generated
sulfur oxo radicals and enabling the oxidation of methane.
Deoxygenation. Deoxydehydration (DODH) is the reduction of
vicinal diol moieties to alkenes and is catalyzed by polyoxo
metal complexes. Catalytic turnover of DODH is typically
achieved by removal of one equivalent of water and one “O
atom” which can be accepted by a terminal reductant (Scheme
3). To this end, many solvents and oxo transfer agents have
been explored as possible reductants to drive DODH.

The first evidence of vanadium dioxo-driven
deoxydehydration (DODH) was provided by Nicholas and
coworkers featuring [VO(2,6-dicarboxylatopyridine)]” as the
catalyst.’®> 1-phenyl-1,2-ethanediol was reduced to styrene in
95% vyield using triphenylphosphine as the reductant.

This journal is © The Royal Society of Chemistry 20xx
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Scheme 3. Possible mechanisms of DODH catalyzed by dioxo metal complexes.

Exchanging phosphine for sodium sulfite hampered the yield
mildly, giving 87% styrene. The vanadium complex effectively
catalyzes the deoxydehydration of aliphatic, electron deficient,
and sterically encumbered diols. Conformationally locked cis-
1,2-cyclohexanediol was the lowest yielding substrate, forming
cyclohexene in only 15% vyield, suggesting that substrate
inflexibility significantly impacts reactivity. Other vanadium
dioxo complexes were shown to be active catalysts for DODH by
the Nicholas group.!* Among the three new reported catalysts,
one complex catalyzed the deoxydehydration of 1-phenyl-1,2-
ethanediol, diethyl tartrate, and 1,2-hexanediol using carbon
monoxide as a reductant.

While exploring the inhibition of reactivity by ring strain,
Bryce and coworkers found that alkene yields were substantially
lower in the absence of ambient light.?> Intersystem crossing
events and stepwise olefin extrusion have been previously
explored and are supported by DFT'® but explicit enhancement
of yield by light are shown here. The yields of cyclic cis and trans
diols were still low (<20%), but enhancements of up to 5x were
observed for reactions performed in light versus dark
conditions.

Molybdenum

Isoelectronic to vanadium dioxos, molybdenum dioxos
exhibit the most diverse chemistry of all the reported dioxo
complexes. Molybdenum dioxo complexes are also among the
most well studied metal dioxos in the literature. Commercially
available MoO,Cl,(L); (L=DMF, DMSO, H,O, etc.) alone is an
extremely versatile catalyst for a variety of organic
transformations.'”/18

Oxygen Atom Transfer. The topic of molybdenum-catalyzed
epoxidation of alkenes has been extensively investigated and is
reviewed elsewhere.'® Notably in recent years, epoxidation has
been invoked as a critical initial step in the stereoselective anti
dihydroxylation of alkenes utilizing commercially available
molybdenum dioxo sources and chiral ligands.20-22

This journal is © The Royal Society of Chemistry 20xx

Oxygen atom transfer to and from sulfur atoms has been
reported using a variety of terminal oxygen donors and
acceptors and will not be discussed here 234>

Isomers of a molybdenum dioxo complex bearing two
pyrimidine-2-thiolate ligands (Scheme 4, complex 2) were found
to reduce nitrate in the presence of triphenylphosphine.*®
While reactivity of this type is remarkable, low yields are
believed to arise from insolubility of nitrate sources in organic
solvents and catalyst deactivation by formation of an unreactive
Mo(IV) nitrosyl complex. Complex 2 has also been shown to
reduce perchlorate to chloride using four equivalents of
triphenylphosphine.*”*® Scandium and other Lewis acid
additives have increased the turnover numbers in similar
molybdenum dioxo complexes, affording yields surpassing
80%.%° Molybdenum dioxo catalyzed nitrate reduction can be
performed using thioethers as oxygen acceptors. In these cases,
nitrate is converted to nitrite concomitant with oxidation of the
thioether to sulfoxides. 5051
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Scheme 4.

MoO,Cl;(DMF), catalyzes OAT from sulfoxides and aryl nitro
groups using pinacol as a Mechanistic
interrogations into the OAT from aryl nitro groups to pinacol

reductant.>?

utilizing a cis-dioxo Mo N-heterocyclic carbene (NHC) complex
invoke a reduced Mo(1V) oxo accepting an oxygen directly from
the coordinated nitro moiety.>® The resulting aryl nitrosonium
is posited to react with water to access the final aniline product.
This strategy was later used to reduce nitroaromatic substrates
that were then coupled to one equivalent of ketone formed
from pinacol oxidation. Scheme 5 outlines the reduction of
nitroaromatic substrates to anilines. Generally the mechanism
for the reaction entails reduction of a Mo(VI) dioxo to a Mo(IV)
oxo species. The ensuing oxo transfer from nitroaromatics to
the molybdenum center affords a reduced aryl nitrosonium.
Protonation of the nitrosonium by water leads to release of
oxygen and formation of aniline. Intramolecular cyclization to
form heterocyclic compounds after reduction of the nitroaniline
has been demonstrated and often incorporates the oxidized
reductant.>*>7 Notably, Pyridine-n-oxides are also catalytically
deoxygenated by MoO,Cl,(DMF), using pinacol as a reductant.
58 Aside from cyclization, new C-N bonds are formed when
MoO,Cl;(DMF), catalyzes the reduction of nitroaromatics by
triphenylphosphine. Following reduction, the coordinated O-N-
R fragment is attacked by the alkyl of a boronic ester forming a
new C-N bond. >°

J. Name., 2013, 00, 1-3 | 3
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The oxidation of bromide to hypobromite by hydrogen
peroxide is catalyzed by the [Mo0O,]** moiety. Hypobromite
formed in situ acts as a potent brominating agent of aromatic
rings (Scheme 6). This strategy has been demonstrated with
numerous molybdenum complexes bearing a variety of ligands.
60-72 However, despite the structural diversity of the
molybdenum complexes, reactivity is presumed to always
follow the general mechanism of formation of a metal oxo-
peroxo species followed by attack of the metal peroxo by
bromide to yield hypobromite. Reactions of this type do not
easily fit the typical description of OAT from a metal dioxo as
the metal oxygen double bond is not acting as the oxygen atom
donor. Oxidation of bromide does provide another unique
example of reactivity involving metal oxo peroxo complexes.
There are fewer examples of vanadium dioxos catalyzing similar
transformations.”74

H,0, H,0

o hg
_W °©
BrO Br

Scheme 6.

A notable example of nonclassical OAT has been reported by
Brown and coworkers. 7> They find oxygen atom transfer from
triethylamine-N-oxide to a six-coordinate Mo(VI) center yields
an eight-coordinate Mo(VI) trans dioxo complex. This eight-
coordinate species performs OAT to phosphines. However,
reduction is observed at the redox non-innocent ligand instead
of at the metal center. In this example of nonclassical OAT,
molybdenum functions as an atom donor and acceptor without
changing oxidation state.

Following OAT, molybdenum dioxos have been shown to be
competent single electron transfer agents. These single
electron transfers result in a Mo(V) oxo species. A molybdenum
dioxo complex was reduced via OAT to a phosphine.’®
Treatment of the resulting Mo(lIV) complex with ferricenium
yields a stable Mo(V) oxo complex that is coordinately
unsaturated. Later work by the same group incorporates two
ferrocenium moieties into the ligand backbone.”” When the
complex is exposed to excess phosphine, superstoichiometric
amounts of phosphine oxide (relative to Mo) are observed. To
account for this excess oxidized phosphine, the authors posit
OAT is followed by association of a water molecule to give a
Mo(IV) oxo aquo complex. Intramolecular charge transfer from
the reduced Mo(IV) center to the Fe(lll) on the ligand backbone

4| J. Name., 2012, 00, 1-3

and loss of two protons regenerates the initial Mo(VI) dioxo
complex that can further participate in OAT.

Similar reactivity is realized by incorporation of ruthenium
polypyridyl into the molybdenum dioxo ligand backbone.7%7° In
these cases, rates of OAT from DMSO to triphenylphosphine
may be accelerated under visible light irradiation.

Bond Making. The utility of both commercially available and
synthetically uniqgue molybdenum dioxo complexes as catalysts
to make various new bonds continues to be developed.
Analogous to the vanadium dioxo systems reported by Nicholas,
lignin-derived benzylic alcohols undergo addition to the
molybdenum-oxygen bond before C-O bond homolysis
generates benzyl radicals which undergo radical coupling.8®
MoO,Cl;(DMF), catalyzed the reductive coupling of aryl
alcohols to an alkyl or aryl fluoroborate coupling partner using
several reductants including alcohols.8* Commercially available
MoO,Cl; catalyzed the formation of a carbon phosphorus bond
between an imine and diethylphosphite to give alpha-
aminophosphonates.?

Several other reductive bond-making reactions have been
reported using molybdenum dioxo complexes as precatalysts.
Thorough mechanistic investigations into these systems have
not yet been reported for these reactions; however, these
transformations remain noteworthy. 83-8¢

In a unique subset of reactions to form new O-O bonds,
commercially available MoO;(acac), served as a precatalyst for
the hydroperoxidation of ketals, ketones, epoxides, and allylic
alcohols. 8788
Bond Breaking. Chambers and coworkers demonstrated a rare
instance of [Mo0;]?**-mediated photochemical C-H activation by
MoO,Cl,(*Buy-bpy).2° This exciting work demonstrates the
oxidation of alkyl and allylic C-H bonds (Scheme 7). In the case
of allylic 1,4-cyclobutadiene, quantitative conversion to
benzene is observed. Allylic C-H activation in cyclohexene gives
high yields of dimerized radical and minor chlorinated products.
Stronger alkyl bonds can be activated and converted to
oxygenated products. Strong evidence for turnover is supported
by the breakdown of the inactive Mo(V/V) dimer back to the
active [Mo0,]%** species by oxygen atom transfer agents such as
pyridine-N-oxide and DMSO. Efforts to interrogate the
characteristics of the excited states in MoO,X;(*Bu,-bpy)
demonstrate that photoexcitation and subsequent reactivity
with C-H bonds is extremely sensitive to identity of the X

ligand.%®
'Bu Bu
ORTY H NS _oH .
NE + _— 7 Mel Tt R7TR
= N/ (I:|%O Ry R, = N/ (I:|%O 1 2
[ By N—

Charge-separated
photoexcited state

Scheme 7.

Another instance of single electron transfer to a [Mo0O;]**
moiety has been recently reported. Reaction of [M00,]?* with
trisperfluorophenyl borane affords a reactive frustrated Lewis
pair (FLP). The FLP reacts with phenyl silane to give the transient
molybdenum oxo siloxide. This siloxide serves as a single

This journal is © The Royal Society of Chemistry 20xx
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electron oxidant of a second equivalent of silane to generate
reactive silyl radicals. °*

Condensation and C-C bond cleavage in MoO,Cl;(DMSO), is
believed to yield a reduced Mo(IV) oxo complex. °?> DMSO serves
as an oxo donor to regenerate the catalyst.

Reductive depolymerization of ester-based plastics was
catalyzed by Mo0O,Cl, using silanes as reductants.®® Presumably
ester cleavage proceeds as previously reported® with use of
excess aryl silane. Long reaction times afford further reduction
of silyl ethers by excess silanes. Reductive depolymerization of
ester-containing polymers can also be realized using boranes as
reductants.®®
Deoxygenation. A notable deoxygenation reaction catalyzed by
the precatalysts MoO,Cl;(H,0); and MoO,(acac), converts aryl
ketones into alkenes.’® Deoxygenation likely occurs by
reduction of the ketones to alcohols before a final dehydration
to the alkene products. Support for this mechanism is backed by
reduction of independently synthesized secondary alcohols.
Further reduction of aryl ketones to alkanes can be achieved
using nonpolar solvents like toluene.®”

Various commercially available
complexes catalyzed the reduction of lactic acid to a mixture of
reduced products.®® In addition to propionic acid from the direct
deoxygenation of lactic acid, the gaseous products carbon
dioxide, carbon monoxide, and methane were detected,
indicating operant bond cleavage pathways. Other side
products include polymeric and dimeric species of propionic

molybdenum  dioxo

acid and condensation products from the reaction of lactic acid
with gaseous byproducts.

Dehydration catalyzed by another family of commercially
molybdenum dioxo complexes converted 1-
phenylethanol to styrene with low yields. The same complexes

available

were screened for dehydration reactivity towards a broad
substrate scope.®®

Deoxygenation
molybdenum dioxo complexes to yield alkenes.

has been achieved by
Multiple

mechanisms are likely active during catalysis, as evidenced by

of epoxides

the retention, inversion, and scrambling of stereochemistry
from optically pure epoxides. 100-102

Among the multitude of deoxygenation reactions reported
in the literature, one attractive route to biomass up-conversion
is the deoxydehydration of diols and polyols (vide supra,
Scheme 3). Molybdenum dioxo complexes have been
investigated in recent years due to their low cost and low
toxicity, making them attractive alternatives to canonical Re
complexes (Chart 1). Our group has recently published an in-
depth review of DODH, here we provide an update for work
published in recent years.1%3

This journal is © The Royal Society of Chemistry 20xx
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Chart 1. MoO, -based DODH catalysts

As described above DODH can function via many
mechanisms. Mo-based DODH catalysts exhibit this diversity of
mechanisms possible. Employing MoO,Me,(bpy) as a catalyst,
Fristrup and coworkers screened a variety of polar protic,
aprotic, and nonpolar solvents for their abilities to act as both a
solvent and reductant.’®® They found isopropanol to be the
most suitable choice for solvent/reductant given its ability to
readily reduce the molybdenum dioxo complexes. DODH of 1,2-
hexanediol was achieved at 250 °C with greater than 98%
conversion of diol and 42% selectivity for alkene. Dominant side
reactions include oxidation of the diol to carbonyl products,
which may further react to give acetal formation. Notably,
alkene yields never surpass 50%, implying oxidation of substrate
may be a dominant reduction mechanism. The resulting
carbonyl products may undergo secondary reactions.

Aiming for commercial accessibility of DODH systems,
MoO;(acac), has been explored as a possible catalyst.%> Under

J. Name., 2013, 00, 1-3 | 5
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microwave irradiation in toluene and using triphenyl phosphine
as a terminal reductant, 1-phenyl-1,2-ethanediol was converted
to styrene at 170 °C in 40 minutes. Reductions of more
challenging aliphatic diols were also realized in anisole. 1,2-
hexanediol was reduced to hexene with 40% yield at 220 °C in
40 minutes. 1,2-decanediol was reduced to decene with 53%
yield at 230 °Cin 40 minutes. All the reported catalytic reactions
gave high (99%) conversions of diol with low (<10%) yields of
oxidized substrate. The authors conclude that the high
conversion at high temperatures may be due in part to thermal
instability of the substrate.

Bulkier acetylacetonate ligands, dubbed B-diketones, were
explored for the DODH reaction as alternatives to the
commercially available MoO(acac);.1%® The
electronic effects of these ligands are easily tuned by
substituting the B-diketone. Mild enhancements in the DODH of
1,2-hexanediol to hexene were afforded by increasing the
electron donation of the ligand but significant increases in yield

steric and

were found when more sterically demanding B-diketones were
employed. The best results utilized the mildly electron donating
and very sterically crowded 2,2,6,6-tetramethylhemptate,3,5-
dione as a ligand. Steric crowding at the catalyst is posited to
inhibit extensive oligomerization, which would effectively
decrease sites for catalysis. A survey of the substrate and
reductant scope gave excellent yields of hexene, cyclohexene,
and diethyl fumarate when triphenylphosphine was used as a
reductant in mesitylene.

Further efforts to stabilize the molybdenum dioxo center for
the DODH reaction have employed multidentate ligand
frameworks. Okuda and coworkers synthesized a series of
0SSO- and ONNO-coordinating tetradentate ligands and
evaluated their ability to deoxydehydrate anhydroerythritol
using 3-octanol as reductant.!®” The best yields of 2,5-
dihydrofuran were achieved using the OSSO ligand, giving 57%
yield of alkene at 200 °C. Catalytic runs using the ONNO ligand
gave low conversions and yields.

ONO pincer ligands featuring a chelating pendant arm to
stabilize the molybdenum dioxo centers and their use in DODH
were explored by John and coworkers.'°® Modifications in the
chelating pendant arm were unsuccessful in improving the
deoxydehydration of 1-phenyl-1,2-ethanediol. Only when the
pendant arm was modified to a noncoordinating benzyl group
was catalytic activity enhanced. In this case, 34% styrene was
observed using triphenylphosphine as a reductant. Removal of
one half of the ONO ligand to give a dimeric molybdenum
species gave nearly identical reactivity to the ONO-benzyl
system, perhaps suggesting a catalytically competent bimetallic
species.

Pincer ligands have also been used to stabilize Mo centers in
the DODH reaction. Tran and Kilyanek synthesized a bulky bis-
phenolate ONO ligand to inhibit dimerization of the reduced Mo
species thought to neutralize catalytic activity.%® The complex
was capable of reducing aliphatic and aromatic diols with
homogeneous and heterogeneous reductants. 1,2-hexane diol
was reduced to hexene at 59% yield using triphenylphosphine
as reductant with low yields of oxidized substrate. Showing
promising results for scalability and facile product separation,

6 | J. Name., 2012, 00, 1-3

carbon was employed as a heterogeneous reductant and 1-
phenyl-1,2-ethanediol was reduced to styrene in 37% vyield.
Attempts to deoxydehydrate trans-stilbene often leads to
complete substrate oxidation; however, increased propensity
for DODH was observed when triphenylphosphine and the ONO
complex catalyzed reduction. Interrogation into the initial
reduction by triphenylphosphine suggests dimerization may still
inhibit catalysis, despite the steric bulk of the ligand. Further
evidence that catalytic efficiency is sensitive to coordination
environment is supported by decreased reactivity when
reactions are spiked with exogeneous triphenylphoshine oxide.
Together, these results suggest catalysis likely requires
coordinative unsaturation and is thereby inhibited by
oligomerization and other strongly coordinating reaction
byproducts.

A less bulky ONO coordination environment was also
explored by the same group using 2,6-pyridinedicarboxylate as
a ligand.’® 1-phenyl-1,2-ethanediol was chosen as a model
substrate and an extensive scope of reductants was performed.
The commercially attractive secondary alcohols 2-propanol and
3-octanol were found to give styrene yields of 30% and 14%,
respectively. Heterogenous reductants carbon and zinc gave
modest yields of 31% and 33%, respectively. The highest
performing reductant was triphenyl phosphine, which gave
maximum vyields of 61%; however, styrene was found to be
consumed by formation of polystyrene at reaction times greater
than one hour. Addition of hydroquinone as an inhibitor of
polystyrene formation increased yields to 69% after 6 hours of
reaction. Kinetic analysis of the triphenylphosphine/1-phenyl-
1,2-ethanediol system was conducted using in situ IR
spectroscopy to monitor the formation of triphenylphosphine
oxide. The results are consistent with a mechanism involving
initial rapid reduction of the metal dioxo center followed by
slow catalyst turnover to afford alkene. DFT studies support
rapid reduction by phosphine, but the largest energetic span in
the catalytic cycle!! involved proton transfer during the
condensation between substrate and the metal oxo bond.

In addition to a broad range of deoxygenation reactions
(vide supra), a molybdenum dioxo supported by two
acylpyrazolonate ligands was found to catalyze the
deoxydehydration of 1-phenyl-1,2-ethanediol.1%°
Deoxydehydration of 1,2-cyclooctanediol using
triphenylphosphine as the reductant gave yields of up to 55%.
The that the disparity
triphenylphosphine oxide formation and alkene

authors  note between
implies
additional side reactions of the substrate, inflating the observed
consumption.
A final example of molybdenum catalyzed DODH that
cannot be overlooked is the report by Gebbink and coworkers
drawing a direct corollary between the CpReOs system and its

molybdenum counterpart, [CoMo00,],0.112

Tungsten

Reports on tungsten dioxo complexes since 2010 are sparse,
and the reactivity of these complexes mainly centers on
epoxidation.13-118 One standout addition to the literature is

This journal is © The Royal Society of Chemistry 20xx
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WO;(acac), functioning as a precatalyst in the asymmetric
epoxidation of alkenes in the presence of a chiral ligand.*®

Cp*WO3R where R is a silyl alkane inserts oxygen atoms into
the metal-carbon bond to give quantitative amounts of alcohol
using three unique pathways.'?? Salen-type ligands supported a
luminescent [WO,]?** metal center active in the photocatalytic
cyanation of tertiary amines and the oxidative hydroxylation of
aryl boronic acids.*?!

A tungsten dioxo complex catalyzed the OAT between
DMSO and trimethylphosphine with rates exceeding the
molybdenum analogue (Scheme 8).122 A pyridine-thiolate-
supported biomimetic tungsten dioxo was found to transfer
oxygen from DMSO to trimethyl and triphenyl phosphine faster
than its molybdenum analogue.’?®> The same compound also
catalyzes the oxidation of triphenylphosphine using oxygen as
the terminal oxidant.12*

t-Bu
Cl
t-Bu O\ [_0
N~ *o
o (b,
1]
S. N
Me” ™ "Me + PMe; 3 OPMe3 + |\/|e/S Me

10 mol % 3

Scheme 8.

Oxidative bromination analogous to the cases involving
molybdenum dioxo complexes (vide supra, Scheme 6) have
been reported for a few tungsten dioxo complexes.'?>

Chromium

Recent reports of chromium dioxo complexes are sparse but
the historic contribution of chromyl chloride (Cr,0,Cl,) warrants
attention within the context of reactivity in metal dioxo
complexes. Chromyl chloride oxidations of hydrocarbons dates
to the 19t century reports by Etard.!26 For an overview of
reactivity involving chromyl chloride, we point readers to the
publication of Limberg.'?” The mechanism of chromyl chloride
oxidation of hydrocarbons was elucidated by Mayer and
Cook.1?812% |n their report of chromyl chlorides oxidation of
cyclohexane, they demonstrated oxidation was initiated by
initial hydrogen atom abstraction evidenced by a kinetic isotope
effect of 2.2. The rate of hydrogen atom transfer to chromyl
chloride was related to the strength of the resulting CrO-H
bond, not the radical character in the parent chromyl chloride
complex. Further evidence for reaction rates dependance on
the strength of bonds formed and bonds broken came from
reactions of chromyl chloride with toluene, isobutane, and
cyclooctane. The weaker C-H bonds of toluene, isobutane, and
cyclooctane accelerated the rate of oxidation by chromyl
chloride (compared to cyclohexane). These observations
undoubtedly helped create the foundation for a generalized
theory of proton-coupled electron transfer wherein reactivity is
dominated by the thermodynamics of the bonds being broken
and formed.130

This journal is © The Royal Society of Chemistry 20xx

Rhenium

In contrast to the systems discussed above, rhenium dioxos are
commonly found as Re(V) d2. The unique electronic state in
addition to the dioxo moiety affords catalytic reactivities not
observed for other d° metal dioxos. The largest disparity in
reported reactivity between Re(V) complexes and other d°
metal dioxos is the ability to form Re hydrides. The Re hydride
is a critical intermediate in many bond forming and reductive
processes, accessed through an initial addition across the
rhenium oxo bond. d° metals are unable to access hydrides in
one step, instead requiring initial reduction.

Bond Making. Among the most common rhenium dioxo catalyst
is the commercially available RelO3(PPhs),. Scheme 9
summarizes the bond-making reactions catalyzed by this
complex.

RelO,(PPhs), catalyzes the reduction of imines to form C-N
bonds in high yields for primary amines and in moderate yields
for secondary amines using phenylsilane as a reductant.'3!
Mechanistic interrogation used dimethylphenylsilane-d as a
reductant. Selective deuterium-carbon bond formation in the
reduced imine implies a rhenium hydride forms during catalysis
before hydride attack on the N-coordinated imine. A silylated
intermediate is formed by elimination and is subsegeuntly
undergoes hydration to give the final product and silanol
byproducts.

T PhMe,SiH
Ar'
pn.  pn 2HO—= PPhs AMNHZ HN
< Ph R//o )
Ph Ph PPh o PhS|H3 Ar
PPh;
“oH %\Rz PPhg )I\ HBpln
Bpm
Ar R2 )\
Rs R” "Ry
Scheme 9.

Hydroboration of aldehydes was catalyzed by RelO,(PPhs),
to give the corresponding borate.'32 Hydroboration of
quinolines was also reported. Reactivity is believed to proceed
through formation of an initial rhenium hydride, forming the
metal borate in the process.

Carbon-carbon bond formation from the reductive coupling
of alcohols is catalyzed by RelO,(PPhs),.133 Benzylic and allylic
alcohols were reductively coupled using triphenylphosphine as
the terminal reductant. Reactivity is believed to proceed
through condensation between two equivalents of alcohol and
catalyst to yield a bis alkoxide intermediate. In contrast to the

J. Name., 2013, 00, 1-3 | 7
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radical recombination seen in vanadium systems (vide supra),
C-O bond homolysis is followed by direct radical attack of the
adjacent metal alkoxide, affording C-C bond formation. 134 Lack
of reaction with HAT donors further supports this mechanism.
Carbon monoxide was also found to be an efficient reductant in
the reductive coupling of benzhydrol. In an analogous fashion,
alkenes function as competent coupling partners for aryl radical
homolyzed by reduced rhenium alkoxides. *3°

Catalytic hydrosilation of carbon dioxide was catalyzed by a
PNN-bound rhenium dioxo complex under high pressures at
room temperature.3® Initial addition of the silane generates a
purported rhenium hydride siloxide followed by CO; insertion
into the hydride generating bound formate. Elimination of the
silyl formate regenerates the catalyst. Further reaction with
excess silane further reduces the silyl formate to silyl methanol.

RelO,(PPhs3), catalyzes the reduction of alkenes in the
presence of excess silane reductant. 37 Presumably, rhenium
hydride is formed from the addition of the silane and the metal
oxo bond. Insertion into the hydride yields a metal alkyl
complex that can oxidatively eliminate silyl ethers. o-bond
metathesis with excess silane possibly yields alkane and a new
silicon-silicon bond.
Bond Breaking. Methyltrioxorhenium (MTO) is among the most
used organometallic metal oxo compounds. MTO has found
numerous applications, including as an oxygen-transfer
catalyst, in DODH, and in other deoxygenation chemistries.
Methyldioxorhenium(V) (MDO) is commonly invoked as a
catalytically competent species in the DODH reaction.'3%13°
MTO catalyzed deoxygenation reactions of biomass and
biomass-surrogate molecules extremely important,
especially in the work of Toste'#%'41 Nicholas'*2 and others and
has been extensively reviewed elsewhere.1#3-148

One specific instance where MDQ’s reactivity has been
implicated is in the cleavage of lignin model compounds. MTO
is converted to the active catalyst MDO in situ via hydrogen
transfer and is active for the cleavage of the B-O-4 linkages in
the lignin model compounds.'*® The resulting phenolic and
aldehyde products provide promising results towards
sustainable chemical feedstocks using biomass upconversion.

are

Che and coworkers present a rare case of an octahedral, d? cis-
Re(V) Electrochemical single-electron
oxidation affords a Re(VIl) complex that is active towards the
oxidation of weak C-H bonds via hydrogen atom transfer.

dioxo complex.t>°

8 | J. Name., 2012, 00, 1-3

AT
OH
0 Ar)\ 0
(0]
PPh; Ar)j\/R A~UR
OMe 1.0 Ar
~—— " |-R&Z. — > SR
ROH | SO  PhSiH; I
OMe PPhg
OH (I?
R Red _S HBcat
OH R™ Ry
PN
rd ORed R Ry
H,0

Scheme 10.

Deoxygenation. Analogous to the molybdenum dioxo catalyzed
deoxygenation reactions, RelOy(PPh;y), performs similar
reactions including dehydration of benzylic alcohols®?,
dehydration of alpha-terpineol**?, reduction of sulfoxides using
boranes'>3, deoxygenation of aryl ketones to alkanes'>* or
alkenes®®, and DODH'%¢, These reactions are summarized in
Scheme 10.

In addition to the dioxo intermediates in MTO-catalyzed
DODH, the cis-dioxo Re(V) complex reported first by Che (vide
supra) and two structurally analogous complexes were tested
for the DODH of diols.’>” Modest activity was observed for all
complexes at temperatures below 180 °C. Presumably, the
systems are functioning as precatalysts that thermally
decompose near these temperatures to the active catalytic
species.

A trans rhenium dioxo complex, [PysReO,]*, functions as a
prectalyst to reduce diols to alkenes.'>® Evidence for the direct
involvement of the parent complex during catalysis is given by
the stoichiometric reduction of 1,2-hexanediol in the absence
of reductant. While
unambiguous, the ability of a trans dioxo Re to catalyze DODH
merits discussion. DODH may only occur when a stable cis dioxo
configuration is available at the metal center. The lability of the
pyridine ligands in [Py;ReO,]* suggests initial condensation of a
diol and metal oxo bond displaces a pyridine ligand to yields a
Re oxo diolate intermediate. A single turnover of this complex
is believed to give the active catalyst species, [PysReOs]* which
features the necessary cis dioxo geometry.

involvement of the Re complex is

Conclusions and Future Outlook

Here we have described the recent literature involving
reactivity of metal dioxo complexes. Over 40 years of research
has diversified and progressed reactivities involving metal dioxo
complexes and interest in these systems is expected to continue
making broad impacts. Deoxygenation of biomass remains an
attractive route to sustainable platform chemicals and metal
dioxo complexes are a natural choice to catalyze these

This journal is © The Royal Society of Chemistry 20xx

Page 8 of 15



Page 9 of 15

Dalton Transactions

reactions. The reported reactivity of metal dioxos in catalyzing
oxidative and reductive reactions exemplifies why they are an
excellent candidate to drive the transformation of structurally
diverse biomass derived substrates. We expect this to be an
active area of research for many years to come.

The chemistry of metal dioxos as net hydrogen acceptors
(two protons, two electrons) demonstrates the potential of a
vast number of organic molecules to function as net hydrogen
donors. The reactivity of metal dioxos diverges from late metal
chemistry where hydrogen transfer generally leads to reactive
metal hydride species. In contrast, metal dioxos generate a
reduced metal and one equivalent of water. The resulting
oxo can be used to drive a variety of

including deoxygenations and
dechalcogenations. Perhaps some of the most intriguing but

reduced metal
transformations

currently underdeveloped chemistries involve the reduction of
challenging substrates such as carbon dioxide. Reduction of
carbon dioxide by two electrons and one proton to formate is
enzymatic systems such as formate
dehydrogenase containing high oxidation state Mo/W
centers®®,'%0, Notably, hydrogen transfer to a metal dioxo
accesses reduced oxidation states at the metal without forming
metal hydride species, thus disfavoring hydrogen evolution
which commonly competes with CO, reduction.

precedented in

Oxygen atom transfer continues to be a powerful tool to
achieve difficult reductions such as the reduction of nitrates,
nitrites, and organic nitro functional groups. Reduced metal oxo
species may be accessed from a variety of reductants and serve
as potent oxo acceptors. The potential for reduction of N-O
bonds has broad impacts, especially the remediation of drinking
water.

Besides biomass conversion and deoxygenation reactions,
metal dioxos are potent oxidants capable of activating small
organic molecules. The intrinsic driving force provided by the
high oxidation state metal, mildly basic terminal oxo, and
tolerance to air and water make metal dioxo complexes a
centerpiece
especially those involving the cleavage of C-H and O-H bonds.

in the development of organic oxidations,

Oxidations of this type may also be driven electrochemically or
photochemically, broadening the scope of possible terminal
oxidants. Abstraction of a hydrogen atom from a C-H bond
concomitant with reaction of the resultant carbon radical with
a coordinated labile ligand is an intriguing strategy for net
addition of a C-H bond to multiple sites on a metal dioxo
complex. The reported redox noninnocence of some ligands
supporting metal dioxos, e.g. the work of Brown and coworkers
vide supra, lends credence to possible multisite reactivity.
Additionally, photochemical excitation to generate charge
separated radicals in metal dioxos may also yield similar
multisite reactivity where long lived LMCTs may be quenched
by carbon radical fragments from C-H bond homolysis.
Electrochemical methods may also find use in the reduction
of metal dioxos which are otherwise readily reduced by
reductants that donate net hydrogen atoms.
Achieving similar reductions electrochemically is theoretically

chemical

possible with protons and electrons, presenting a viable route
to electrochemically driven reduction reactions. Reductions of

This journal is © The Royal Society of Chemistry 20xx

this type remain underdeveloped, and we expect reports of
electrochemical routes to reduced metal oxos to grow as
electrochemical techniques become more accessible.

The chemistry of metal dioxo species shows great promise
going forward. The general modes of reactivity described here,
oxygen atom transfer, addition across the metal oxo bond, or
radical atom transfer, encompass a plethora of catalytic
applications which will continue to bare fruit in the years to
come.
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