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The utilization of machine learning in Materials Science has highlighted that trained models’ effec-
tiveness is dependent on the quality and quantity of data utilized for training. Unlike fields such as
image processing and natural language processing, there is limited availability of atomistic datasets,
leading to biases in training datasets. Particularly in the domain of materials discovery, there exists
an issue of continuity in atomistic datasets. Experimental data sourced from literature and patents is
usually only available for a select number of atomistic data, resulting in bias in the training dataset.
This study focuses on developing a language-based model for generating a synthetic dataset of quan-
tum materials using a variational autoencoder approach. The study centers on generating a synthetic
dataset of quantum materials specifically for quantum sensing applications, with a focus on two-level
quantum molecules demonstrating dipole blockade. The proposed technique offers an improved sam-
pling algorithm by incorporating newly generated materials into the sampling algorithm to create a
more normally distributed dataset. Through this technique, the study was able to generate over
1,000,000 candidate quantum materials from a small dataset of only 3,000 materials. The generated
dataset identified several iodine-containing molecules as promising single photon emitting materials
for potential quantum sensing applications.

1 Introduction
In recent years, the use of machine learning techniques in chem-
istry has become increasingly prevalent. Despite this, it has be-
come apparent that many available chemical and materials sci-
ence datasets suffer from bias1–4. This is primarily because these
datasets are often composed of a collection of patents and re-
search articles that exist on the internet, rather than representing
a continuous material space4–6. In response to this issue, the
present study seeks to leverage the predictive abilities of deep
learning to generate a chemically diverse dataset that is less bi-
ased and more robust than those currently available.

To achieve this goal, this study employs a deep learning tech-
nique known as a variational autoencoder (VAE), which is capa-
ble of synthesizing chemical species with specific chemical prop-
erties7–10. The VAE forms a custom chemical compression intelli-
gence that provides efficient generation of new specific chemical
species by sampling the latent space of the VAE, which can be
thought of as a representation of compressed chemical informa-
tion11–13. By training the neural network to learn the chemical
and structural similarities of species with specific physical proper-
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ties, we enable it to identify patterns in a higher dimensionality.
This research is focused on the generation of candidate quan-

tum materials, specifically single-photon source (SPS) materials,
also referred to as UV/vis materials14–18. These SPS materials
rely on a two-level system of electronic states with the added com-
plexity a secondary interaction to form a resonant behavior. While
it is beyond the scope of this paper to discuss all of the potential
quantum material frameworks the focus of this study is on the dis-
covery of a material that exhibit SPS behavior with a strong dipole
interaction. The creation of a chemically diverse dataset is critical
to the development of accurate machine learning algorithms. In
the context of machine learning, the phrase "garbage in, garbage
out" highlights the importance of high-quality data19,20. The ma-
chine learning algorithm must be taught on a range of inputs and
outputs, as the space is continuous, and it must learn everything
to know everything.

Several studies have emphasized the issue of bias in exper-
imental design and data collection, which ultimately leads to
skewed and unreliable data. Griffiths et al. investigated biases
in the natural sciences, focusing on the impact of data splitting,
noisy datasets, and contextual variables on the outcome of exper-
iments21. Similarly, Kovacs et al. highlighted the direct effects
that biased and unbiased datasets can have on the quality of ma-
chine learning outputs22. Glavatskikh et al. demonstrated how
the lack of diversity in data limits machine learning’s potential to
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Fig. 1 Subfigure A is an illustration of the AGoRaS network illustrating
how a chemical species is encoded and used as training data for the net-
work. Chemical database information is compressed and decompressed
to form a high-dimensional latent space. Subfigure B is an illustration
of how the trained latent space can be sampled to generate new single-
photon emitting materials.

predict23.
The creation of an experimentally unbiased, continuous dataset

is a costly and challenging task. However, our use of deep learn-
ing techniques, specifically the VAE, shows promise in generat-
ing a chemically diverse dataset with specific chemical proper-
ties8,24,25. Through our research, we aim to contribute to the
development of more accurate and reliable machine learning al-
gorithms in chemistry and materials science.

In the field of SPS materials, it is common to encounter incom-
plete or inaccurate data in the literature, making it unsuitable for
machine learning algorithms. Zakutayev et al. have highlighted
the significance of having sufficiently large and diverse datasets
for the training of advanced machine learning algorithms in ma-
terials science26 emphasizes the importance of having a robust
and extensive dataset to develop machine learning algorithms
that can predict the structure, stability, and properties of vari-
ous materials. Furthermore, it illustrates that existing machine
learning algorithms can be quickly and easily adopted to address
material science problems, provided there is a suitable dataset for
training purposes5,27,28.

In the context of UV/vis research, the work of Beard et al.
stands out for their comprehensive collection of available ma-
terials and corresponding relevant calculations29. The authors
conducted an extensive search of over 400,000 scientific docu-
ments to extract a database of just over 8,000 unique compounds.
Despite the use of state-of-the-art tools such as ChemDataExtrac-
tor, the process of creating a database for quantum materials is
challenging. This is due to the wide variety of formatting among
different scientific journals, discrepancies within the tools being
used, and the lack of a standard set of ground truth rules for rep-
resenting materials using the SMILES notation. Nevertheless, the
database created by Beard et al. is currently the most complete
UV/vis material dataset available.

Single photon materials are crucial for a variety of applications,
such as quantum communication, quantum computing, quan-
tum information, and quantum precious metrology16,17,30,31.
SPS materials have found use in various applications, includ-

ing quantum computing materials, remote sensing, and dipole
gates2,32–34. These single photon materials exhibit a two-level
system behavior, where a resonance is formed between a ground
state and a excited state or two excited states. In the applica-
tion of quantum sensing or computing the defining metric is the
coherence time. Often this involves several aspects of the ma-
terial that are deeply rooted in the atomic coordination on the
atoms. One of the targeted metric in organic based quantum
sensing materials, is discovering a material that exhibits a strong
photo absorption strength and a strong dipole interaction. This
type of molecule when interacting with neighboring molecules
will exhibit a quantum resonance in which a single photon can
exist on only one of the molecules at a time. The dipole interac-
tion will shift or change the neighboring molecule’s excited state
energy level. This single photon-dipole interaction will give rise
to a resonance that can be exploited for quantum sensing and
other quantum applications. One potential application is remote
sensing, which has gained significant attention in recent years as
quantum materials technology has improved. These remote sens-
ing methods have been used to monitor contaminants in water,
air quality trends, dissolved nutrients in surface water, and many
other advanced techniques35–37. For example, Spangenberg et
al. demonstrated how quantum materials could be combined to
detect relative concentrations of mixtures within water in real-
time36. Fei et al. demonstrated that the right combination of
machine learning algorithms and SPS material, the monitoring of
groundwater contamination could be achieved37. However, the
limited dataset of 1,665 materials used in Fei et al.’s work high-
lights the need for much larger datasets. Moreover, Mamede et
al. further demonstrated the potential of machine learning to be
applied with quantum materials by focusing on finding the UV/vis
absorption spectrum of organic molecules using fingerprints gen-
erated from 2D chemical structures. Their work yielded a sample
size of approximately 75,000 molecules using only information
about the chemical structures38.

Recent studies by De Leonardis et al. and Richter et al. have
demonstrated the potential of quantum materials in overcoming
phase-matching challenges in remote sensing applications32,39.
These recent research studies demonstrate the growing demand
for new quantum materials that can advance different fields .
Highlighting the need for more extensive datasets to facilitate ma-
chine learning algorithms in SPS materials science studies.

The hypothesized approach in this study is to create a mate-
rial compression intelligence via the latent space representation
of an existing SPS materials database using a VAE with a similar
structure as AGoRaS7. The latent representation of the materials
can be sampled at various points to generate new SPS materials
with desirable characteristics. The latent space can be viewed as
a representation of the compressed structural and chemical infor-
mation inherent in the species used to train the network. By pop-
ulating the latent space with structurally and chemically similar
SPS materials, the network can learn the underlying similarities
between the materials, resulting in the generation of new materi-
als that share the desired characteristics40.

The VAE’s ability to represent data in n-dimensions and fit input
nodes to probabilistic distributions, typically multivariate Gaus-
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sian distributions, offers a significant advantage over traditional
methods of data representation8,12,13,41. The methodology pro-
posed in this study demonstrates the practicality and flexibility of
the AGoRaS network in creating organic materials for quantum
applications, with the generation of single complex materials re-
placing the balanced chemical reactions generated in the original
AGoRaS study7. The generated materials can serve as a vast and
robust dataset for the training of other machine learning algo-
rithms.

The generation of SPS materials has be rigorously validated,
following a similar methodology to the one outlined by Beard
et al., using a workflow that facilitates data collection, network
training, network testing, material generation, and material test-
ing29. The modular nature of this workflow enhances code qual-
ity and robustness while also enabling non-data scientists to em-
ploy the methodology with ease, thereby expanding the network’s
utility to researchers in different fields who lack data science ex-
pertise. This approach has been successfully utilized in other gen-
erative networks such as ChatGPT, enabling non-data scientists to
generate text with background knowledge beyond their expertise.

2 Methodology

2.1 Processing the Database

In this study, the chemical species used to train the AGoRaS-
Quantum network were obtained from the dataset created by
Beard et al. The data manipulation and network were writ-
ten in Python. An illustration of the workflow can be found in
the original AGoRaS publication for chemical reaction genera-
tion7. The dataset, which contains approximately 8,000 differ-
ent species, was downloaded in JSON format29. This is relatively
small dataset compared to the generated data, which will be in
the millions. To provide a scale, the input data is approximately
0.08% the size of the output generated. To ensure the quality
and consistency of the dataset, each species was validated us-
ing RDKit to verify that its provided SMILES string matched its
IUPAC name42–45. RDKit is an open-source cheminformatic soft-
ware that has a series of tools for checking the validity of SMILES
strings. It is necessary to check the SMILES notation to avoid
training on invalid SMILES strings. There are a set of standards
that can be checked by RDKit and an error code is returned if
the SMILES is invalid. All species were then read into a Pandas
dataframe with relevant information, including SMILES string,
excitation wavelength, intensities, and dipole moments.

To simplify the network’s predictions and improve reproducibil-
ity, the AGORAS network focused solely on predicting SMILES
species and not on their associated properties, such as dipole mo-
ments and excitation wavelength46. This decision allowed the
network to focus on learning the underlying physical and chem-
ical structural patterns rather than extending the prediction to
properties, which could be calculated using density functional
theory (DFT)46–48. To generate new species, the network con-
tinued to use character-level embedding due to its advantages
over word-level embedding in natural language processing. This
allowed the generative network to use the information learned
during training to generate new species based on the universal

alphabet created from all the species in the dataset49,50.

The use of molecule embedding can improve the predictive
power of machine learning models by formulating inputs into se-
quence embeddings8,51–53. In this study, TensorFlow’s built-in
embedding techniques were used to create embeddings based on
the universal alphabet created from the chemical species54. This
approach was inspired by Gaspar et al.’s work, which demon-
strated that molecule embedding can be similar to NLP embed-
dings52. By using sequence embeddings, the network can cap-
ture more of the structural and chemical similarities between the
species, allowing it to generate new species with similar proper-
ties. The use of embedding techniques and a universal alphabet
enables the AGORAS network to accurately represent chemical
species and generate new species, making it a useful tool for ma-
terials science research.

2.2 AGORAS Structure for Quantum Materials

The AGoRaS algorithm is designed to generate new chemical
species based on a vector representation of the longest SMILES
string in the training dataset. The vector is passed through an
Embedding layer in TensorFlow, which projects the input into
a higher dimensionality space. This is a critical step as the in-
trinsic values of the numeric values are removed in the higher-
dimensional space. The projected vectors are then passed through
a bidirectional LSTM layer, with a recurrent dropout of 0.255–57.
The mean and log variance of the output are used to sample the
solution space using a sampling function.

The sampled solution space is then decoded using a RepeatVec-
tor layer wrapped around the output of the latent space, which
turns the data into a tensor vector that an LSTM layer can read.
The LSTM layer’s output is projected into a vector of length n,
and this projection is used to calculate the loss of the network.
AGoRaS uses a sequence-to-sequence style loss function typical
of variation autoencoders, and the kl loss is used as the moni-
toring metric during training. The network was trained for 500
epochs using a batch size of 25, an embedding dimensionality
of 500, and a latent dimensionality of 350. The kl weight used
was 0.1, and the activation function was SoftMax. The optimizer
function was Adam, and the learning rate was set at 1x10−5. This
structure closely mimics that of the original AGORAS network for
chemical reaction prediction, except for the input vector’s length.

The model takes in a vector representation of the longest
SMILES string in the training dataset, which is then projected into
a higher dimensionality space. The projected vectors are passed
through a bidirectional LSTM layer with a recurrent dropout to
extract the mean and log variance, which are then used to sam-
ple the solution space. A sequence-to-sequence style loss function
is used to calculate the loss of the network, with the kl loss serv-
ing as the monitoring metric during training. The model’s perfor-
mance is governed by several hyperparameters, including batch
size, embedding and latent dimensionality, kl weight, activation
function, optimizer function, and learning rate. The AGoRaS al-
gorithm’s combination of deep learning techniques and chemical
domain knowledge allows it to generate new chemical species ac-
curately and efficiently.
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Fig. 2 Histogram comparing the number atoms (A), excitation wavelength (B), the total dipole moment (C), and the peak oscillator strength (D).
The blue bins are the training (original) species and the red bins are the generated species from the VAE generated in this study. The goal is to
identify small molecules with an excitation wavelength near 500 nm, a strong dipole moment, and strong oscillator strength.

2.3 Training AGORAS for Quantum Materials

Once the chemical data had been pre-processed and converted
into a numerical format suitable for neural network architecture,
it was divided into three separate datasets: the training set, the
validation set, and the test set. The training set comprised 70
percent of the available data, the validation set comprised 20 per-
cent, and the remaining 10 percent was used for the test set. A
k-folding approach was used to cross-validate the data over the
dataset. Although AGoRaS-Quantum is a generative model, it
can be validated using traditional methods. The VAE used in this
study was evaluated by its ability to encode the validation set and
decode it back to the original string construction with no loss of
information.

During the training process, a sequence-to-sequence loss func-
tion was employed to score the reconstructed string versus the
original string. This approach enabled the validation of the VAE’s
ability to reconstruct the chemical equations with zero loss of in-
formation, which is indicative of a stable latent space. Given the
small size of the data used in this study, it was essential to val-
idate the stability of the latent space as much as possible. After
it had been demonstrated that the network could reconstruct the
test data, the remaining 90 percent of the data were also tested
to further validate the stability of the latent space. Although the
network should be able to reconstruct all the data used in train-

ing, this additional test served as a further validation of the latent
space’s stability.

Overall, validating the stability of the latent space is critical for
this study. By demonstrating that the VAE can encode and decode
the original chemical equations with zero loss of information, it is
possible to confirm that the latent space is stable. This validation
is especially important given the small size of the data used in this
study.

2.4 Autonomously Sample the Latent Representation for
Quantum Materials

After a neural network has been trained, it is possible to create
a sampler that can interface with the latent representation using
real species. This can be achieved by selecting two materials and
using them to access the latent space. The sampler then returns
a new species located at some equidistant point between the two
selected materials. Another way to sample the latent representa-
tion is to randomly select a species and have the decoder part of
the network construct new species based on the equidistant points
between the two materials. This directed sampling approach has
a significant advantage over continuous sampling of the latent
space. It enables researchers to focus on areas of the latent space
where the decoded species possess characteristics of interest.

Due to the probabilistic nature of the latent representation, an
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almost unlimited number of sample points can be taken to gener-
ate new species. However, this approach has diminishing returns
as there are only a limited number of chemically feasible species
that can be generated. Nevertheless, the directed sampling ap-
proach can still be a powerful tool for researchers to generate
new species with specific characteristics of interest.

2.5 Validating Generated Species

The methodology for determining the chemical validity of species
was extremely like that of the data cleaning process. The first
step was to check duplicate species were eliminated. The second
step was to check each species for chemical validity using RDKit,
where any physically or chemically unstable species should be re-
jected by the software44. This is a common practice when using a
neural network with generated SMILES species. The ability of the
network to generate valid chemical species helps to further prove
that the latent space is stable and representative of the original
dataset.

The performance of the AGoRaS-Quantum networks is deter-
mine by comparing the number of generated species to the num-
ber of unique species. It was determined that 10% of the gener-
ated species are unique on the first iteration. That means nearly
10 million species need to generate in order to discover 1 million
unique species. Success was around 10% at first because the la-
tent space was limited, since we started with only 3,000 species.
As the latent space was sampled more and more stable species
were added to the list of stable species, the predictions became
better. This increased the stability of the sampling. In the end
it was around 40% of species generated were stable. Another
5% were repeats of previously generated species. This theoreti-
cally would continue to improve as we sampled more of the latent
space.

2.6 Preform Semi-Empirical Methods on Generated Species

Using the SMILES notion provided in the generated dataset out-
put a custom Pipeline Pilot protocol was written that would
take the SMILES entry and convert it to an atomistic descrip-
tion. Once the data was converted to an atomistic description
a semi-empirical density functional theory calculation was con-
ducted. Pipeline Pilot is a powerful tool capable of manipulating
and analyzing large quantities of scientific data and is provided
by Dassault Systems58–60.

The semi-empirical model that was implemented in the auto-
mated script was based on the Materials Studio provided VAMP
software package61. Geometry optimization was conducted with
a diatomic differential overlap (NDDO) and PM6 Hamiltonian,
Auto multiplicity, and a spin state unrestricted Hartree-Fock
(UHF), restricted Hartree-Fock (RHF), or annihilated unrestricted
Hartree-Fock (A-UHF)62,63. Several spin states were tested based
on convergence. A Paulay/IIS convergence scheme with a conver-
gence energy tolerance of 2x10−4. The thermodynamics informa-
tion and total dipole moment were output.

The Pipeline Pilot script conducted a series of data preparation
steps prior to the semi-empirical calculation. After data was read
using SMILES format the SMILES was checked for consistency,

followed by making and cleaning of the molecule. The clean-
ing steps included centering the molecule, adding hydrogen, and
conducting a quick empirical elastic relaxation of the structure
to refine the initial geometry. The structure was provided to a
programmed series of VAMP calculations starting with the most
rigorous spin state and relaxing the spin state in the case of failure
and retrying the calculation. In the event that the semi-empirical
calculation fails for each spin state, the molecule was assumed
unstable and removed from the dataset.

The semi-empirical calculation was chosen because it through-
put and robustness of the calculation. Compared to all-electron
density functional theory calculations, the semi-empirical calcu-
lations take between one to two orders of magnitude less time to
provide a prediction. This is critical to this approach where we
are aiming to predict the properties of hundreds of thousands of
molecules. The reasoning was to use the semi-empirical to pro-
vide a quick estimate of the molecule properties, which could be
investigated using higher fidelity models after the initial screen-
ing using this process.

The semi-empirical model provides an estimate of several prop-
erties of the molecules, not limited to the formation energy,
dipoles, and UV/VIS properties. VAMP can determine the molec-
ular wavefunction of a species, which can then be used to derive
the dipole moment and associated properties. This is done using
the LCAO method of molecular orbitals rather than the standard
MNDO Hamiltonian calculation61,64. VAMP is also able to calcu-
late accurate dipole moments using the Natural Atomic Orbital-
Point Charge model for molecular electrostatic properties. Fur-
thermore, the UV/VIS properties can be predicted using an em-
pirical methodology that is approximate, providing an estimate of
the optical properties.

2.7 Compare Training Data with Generated Data

The above calculation for optical spectra, dipole moments, and to-
tal energy is done for both the original dataset and the generated
data. To determine if our generated species offer a good represen-
tation of real-world conditions, these three properties needed to
be compared and contrasted. In addition, this study also looks at
the number of atoms for both the generated materials and the
original materials. Due to the disparity of the dataset sizes a
percentage normalized comparison between the larger generated
dataset and the original dataset containing approximately 8,000
materials, was taken. It is then possible to compare the total num-
ber of atoms, dipole moments, optical spectra, and total energy
directly between percent normalized datasets. This is done using
histograms, to get a view of the distribution of values for each
dataset. A histogram for the dipole moments with a compari-
son between the original species (blue) and the generated species
(red) is provided in Figure 2.

2.8 Identify Promising Material

Once the dataset has been proven to contain realistic values and
material distributions it is possible to sort the data for promising
materials. The data is sorted by the three criteria discussed in the
previous sections. For this study we have identified two materials
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with strong dipoles and a single frequency characteristics in the
500-600 nm range with a strong peak compared to other peaks in
the UV/VIS spectrum. These criteria are selected due to their di-
rect interest to researchers in the field of quantum sensing, where
single photon materials with strong dipole moments provide an
opportunity for quantum sensors that operate on the principle of
dipole blockade.

Fig. 3 Example of the ability to search the generated solution space
for molecules of potential interest. The inset table within the figure
outline seven molecules in the 500-600 nm wavelengths with an oscillator
strength (pronounced optical peak) above 2.0. These seven correspond
to the black box in the histogram. Note, most materials exhibit low
excitation wavelength and oscillator strength.

2.9 Validate Material with TDDFT

Based on the seven materials outlined in Figure 3 for the remain-
der of this study, the focus will be on the two most promising,
which are FIII and C[I][I]II. We believe these two materials war-
rant experimental consideration, however, before this, it is our
approach to put these molecules through more rigorous compu-
tational calculations. This involves conducting a time-dependent
density functional theory (TDDFT). The higher accuracy of the
TDDFT method than that of the semi-empirical methods provides
greater confidence in the predicted value. This higher level of val-
idation also allows for experimentation with these molecules to
help identify what is the molecular origin or mechanism of these
strong peaks and associated oscillator strength. The molecule’s
emission spectra can be investigated by adding or removing el-
ements to see the response in the strength and the peak wave-
length. The TDDFT approach allows the researcher to visualize
the wavefunction and local density of states as shown in Figure 4.
In this figure for FIII (A and B) and C[I][I]II (C and D) the ground
state density of states (A and C) and the excited states (B and D)
can be investigated. The yellow is associated with the spin-up
states and the blue isosurfaces are associated with the spin-down
states. An important aspect is that the overlap of the wavefunc-
tion is similar to provide good coherence of the excited electron.
Table 1 is an outline of the most promising excited state transi-

From To TD-ex [eV] TD-ex [nm] f-osc Overlap
85 86+ 1.31 950 0.000026 0.50
83 86- 1.46 851 0.000110 0.87
81 86+ 2.17 571 0.001437 0.39
80 86+ 2.76 450 0.000796 0.44

From To TD-ex [eV] TD-ex [nm] f-osc Overlap
111 112+ 1.83 676 0.001886 0.61
109 112- 1.99 622 0.000295 0.59
107 112+ 2.25 550 0.082783 0.56
106 112+ 2.32 535 0.003263 0.46

Table 1 List of most probable transition states and their associated os-
cillator strength (f-osc). The top table is for the molecule FIII and the
bottom table is for molecule C[I][I]II. The transitions with optical transi-
tions between 500-600 nm with large f-osc and overlap are desired.

tions. As can be associated between this Table and Figure 4 a
strong oscillator strength (f-osc) is desirable with a large over-
lap of the wavefunctions. While these may not be the best opti-
cal absorbers within the 500-600 nm range this proves that there
is potential to find these materials. As seen here for these two
molecules the C[I][I]II molecule provides slightly better oscilla-
tor strength when compared to FIII, at the expense of a larger
molecule.

Results
After the SMILES strings had been embedded and the VAE was
trained, the latent space was sampled to generate new chemi-
cal species. The approach of sampling the latent is a unique ap-
proach that saw success in a previous study7 where bias in the
training dataset was corrected. Sampling was stopped once ap-
proximately a million valid species had been disseminated. This
arbitrary stopping criterion was selected because it was greater
than 10 times the size of the original dataset. All species were
run through the data consistency checker to check their unique-
ness and stability. The new species contained species with atoms
ranging from 1 to 74 with an average of 18 atoms while the orig-
inal dataset had molecules with atoms between 1 and 49 with
an average of 22. A comparison of these distributions can be
seen in Figures 2A. The number of atoms within the molecule
was calculated using RDKit. It should be noted that this ability
to predict larger molecules shows again the benefits of this ap-
proach over approaches such as retrosynthesizing. We can see
statistically most of the larger molecules are outliers when com-
pared to the rest of the molecules. It is hypothesized that if the
latent space were to continue to be sampled, especially if the large
molecule species were targeted sampling the area could produce
many large molecules.

The distribution of these atom counts can be seen in Figures 2,
which allows for a more in-depth analysis. Again, the training
dataset is pictured in blue in the background with the generated
dataset in the foreground in red. The y-axis in all the plots is
the percentage of all molecules within that bin and the x-axis is
the associated chemical property. It can be seen from Figure 2
that the generated species and original species share an approxi-
mately normal distribution with two main differences. The first is
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Fig. 4 TDDFT results for the FIII (H2FI3) molecule (A and B) and
C[I][I]II (C and D). Subfigure A and C illustrate the ground states local
density of states surfaces. The yellow is associated with spin-up and blue
is associated with spin-down electrons. Subfigure B and D are the excited
states local density of states. Comparing the ground state to the exited
states provide spatial information of the electron transition outlined in
Table 1. It is desirable to have a high overlap of these states to avoid
decoherence of the states.

the high percentage of species in the first two bins and the second
is that the distributions are not centered around the same number
of atoms. Both of these differences are due to the original dataset
containing single-element molecules. Since they are already in-
cluded in the original species and AGoRaS-Quantum cannot come
up with new elements, it is impossible for it to share that feature.
However, due to the existence of these small molecules, it biased
the network into creating species that were on average smaller
than the median number of atoms for the original dataset.

Of course, for these molecules to be useful as either a dataset
for machine learning or as a database for potential experimental-
ists it had to be proved that these generated species shared the
same properties as the original species. It was decided to look at
molecules containing no more than 10 atoms. This was due to
the computational complexity and cost associated with the semi-
empirical calculations. The criteria that were deemed the most
important to compare between the datasets were those that can
identify if a material is a single photon emitter. That is whether
or not the calculated emission spectra of the molecule exhibit a
single strong peak (high oscillator strength) at some wavelength
in the visible spectrum.

Using semi-empirical calculations it is possible to calculate the
wavelength and emission strength of excited electrons. It is im-
portant to note that the intensity of the light being emitted is diffi-
cult to compare between molecules but can be compared between
other peaks in the spectrum for a given material. It is considered
arbitrary due to the Franck-Condon Principle which explains the
relative intensities of vibronic transitions. These intensities are
the relation between the probability of a vibrational transition
to the overlap of the vibrational wave functions. These calcula-
tions at each energy level led to the calculated emission spectra

that will be used as validation of these materials. All electronic
levels of each molecular species were determined at the standard
state using the semi-empirical computational technique described
earlier. Other properties of interest that were calculated to help
identify promising materials were the total dipole moment, vibra-
tional spectrum, and vibrational strength.

Once it was confirmed that the generated data exhibited sin-
gle peak behavior it was necessary to perform further analysis to
confirm that the generated data shared similar value ranges as the
original data. For this overlapping histograms were determined
to be an ideal way to show that the generated data had properties
similar to that of the real data. Figure 2D illustrates a histogram
of the original and generated species’ peak oscillator strength. It
can be seen that both the generated and original species have a
semi-normal distribution with a slightly left skew to the values.
However, it appears that on average the generated materials have
a slightly weaker peak oscillator strength.

In this type of behavior, both the lower average peak strength
and the identical distribution of values are expected due to the
bias in the training data. Since the network uses all of the original
data as a starting point for sampling the latent space it will always
return data of a similar distribution. This problem could easily
be overcome by sampling only data from the underrepresented
regions until a uniform distribution was created.

The high percentage of molecules being generated that pro-
duce weaker strengths is also a byproduct of the inherited bias.
Due to the training data being sourced from experimental results,
only the best material i.e., the strongest emitters are reported.
This leaves a lot of materials for AGoRaS-Quantum to be able to
generate that still meet the chemical and physical requirements
but do not produce as strong of a peak. Simply put the area of
the latent space that generates strong peak materials is crowded,
while the rest of the latent space is sparsely populated. As shown
in study two, however, if the latent space were to continue to be
sampled until we reached 100X the number of generated mate-
rials to the original material. Then the generated distributions
would be exactly that of the original materials.

Another important aspect of these types of materials is at which
frequency these peaks occur. Figure 2B depicts the excitation
wavelength at which the molecule’s peak oscillator strength oc-
curs for the original and generated species. Once again it can
immediately be seen that the original and generated materials
follow a similar distribution of semi-normal with a left skew. Like
with the previous figure, this could be corrected with a more di-
rected sampling methodology. Another factor in the similarity of
these distributions is that, unlike the other histograms that have
been shown in this study, their values could theoretically be any-
thing. The excitation wavelengths are calculated between 100
and 1400 nm, which helps to enforce an equal distribution of
values within that range. An interesting find from Figure 2B is
that the original data has a disjointed distribution of values when
the excitation wavelength is greater than 250 nm. The generated
data shows a much more normal distribution as the values tail out
to 1200 nm. This helps to suggest that even if the training data
has a disjointed distribution that a VAE will be able to generate a
smooth distribution of the data.
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The total dipole moments of the real and generated materials
were also calculated, which was important in selecting a molecule
that could potentially be operated in the dipole blockade quan-
tum sensing application. The dipole is based on the partial charge
and positions of the atoms. The overlaid histogram for the total
dipole moments of the original and generated species can be seen
in Figure 2C. As we have seen previously it is a semi-normal dis-
tribution with a left skew. Something to note here is the high per-
centage of dipole values around 0 Debye for the original species.
This is due to the original dataset containing single atom species
which would have zero dipole moment. It is interesting to note,
in Figure 2B, where the original data has a bit of an uneven distri-
bution, however, the generated data is a single peak distribution.
The network cannot generate any more single element materi-
als with new elements from the periodic table so the zero dipole
materials are limited.

This filling in of the data represents an extremely important
aspect of VAEs and especially of the AGoRaS-Quantum network.
Which is the ability of the network to map the latent probabilistic
solution space of these materials. By sampling all of the latent
space the network would be able to fill in all of the gaps between
points. It is the aim to show that the new materials are filling
in the solution space and therefore allowing for the removal of
bias. To do this a t-Distributed Stochastic Neighbor Embedding
(t-SNE) was undertaken and shown in Figure 5. The t-SNE algo-
rithm is used primarily to be able to explore and visualize high-
dimensional data such as text. At its most simple level, it allows
a user to get an understanding of how data is arranged in high-
dimensional space. The algorithm accomplishes this through an
unsupervised learning method of stochastic neighbor embedding
to give high-dimensional data a single point on a two-dimensional
grid.

For this t-SNE algorithm, the only input was the SMILES repre-
sentations of the molecules embedded as numbers just as in the
original training for the AGoRaS-Quantum network. The blue cir-
cles represent the generated data set and the red circles represent
the training data. Figure 5A has all of the original data 8,000
species while only showing a randomly selected 8,000 of the gen-
erated species. Meanwhile, Figure 5B also illustrates the 8,000
generated species but has 80,000 randomly selected generated
species. This is done to illustrate how as we sample more species
we can fill in the latent space. It can be seen from Figure 5 that
AGoRaS-Quantum is starting to fill in the blank spaces in the la-
tent space. It is very interesting to note that most of the species
selected belong to the larger emptier area within the latent space.
Figure 5B clearly illustrates how the network is beginning to fill
in all of the available space with generated materials. It appears
the areas around the original species are the most densely popu-
lated with generated materials. This would make sense as species
were used as entry points into the latent space to begin sampling.
So, a high proportion of the early generated species would be lo-
cated near the original species. Due to the memory cost, it was
not possible to show how using 800,000 species would show an
even more densely packed latent space.

Fig. 5 t-SNE plot of the training dataset and the generated dataset with
the oscillator strength representative of the size of the points. Subfigure
A has all of the 8,000 original species and a randomly sampled 8,000
generated species. Subfigure B has all of the 8,000 original species and
80,000 randomly sampled generated species.

2.10 Candidate Quantum Materials

While this study focused more on the framework for the gener-
ation and discovery of new materials it was interesting to point
out that there were a few species that show promise for the tar-
geted application of quantum sensing. The most impressive of the
species is the iodine containing structure shown in Figure 4. Two
iodine containing molecules were identify, FIII and C[I][I]II. Both
of these molecule had two of the strongest oscillator strengths
that was confirmed with TDDFT calculations. These molecules
also exhibited a strong dipole. The peak wavelength of FIII was
851 nm, which is in the infrared. But C[I][I]II was 550 nm, which
is yellow color in the visible and is close to the wavelengths used
in fiber optic communication. A brief literature reveals that iodine
has extensive use in the field of photochemistry, which is encour-
aging and supports the predictive capability of AGoRaS-Quantum.
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Conclusions

In this study, the AGoRaS network7 was extended from the gener-
ation of gas-phase chemical reactions to the generation of quan-
tum materials. This study was designed to demonstrate how
an AGoRaS-style VAE could be used in other applications of
nanoscale materials science. The primary purpose was to demon-
strate how with a small dataset of materials with specific char-
acteristics it would be possible to synthetically generate a large
number of new materials. The focus materials system for this
study was single photon emitting materials. AGoRaS-Quantum
was used to generate a continuous dataset that would allow for
future training datasets to be unbiased. AGoRaS-Quantum was
trained on a core dataset containing 8,000 molecular species. A
sampling of the latent space was stopped after 1,000,000 new
molecular species were created. This was an arbitrary stopping
point and sampling could have continued until the latent space
was saturated. The utility of the generated data was demon-
strated in this study by indentifying several iodine containing
structures that exhibited promising quantum material attributes.

The novel aspect of the AGoRaS-Quantum network was its abil-
ity to generate a large quantity of new molecular species that
were both stable and shared the same defining feature as the
training dataset. This was an improvement of the previous AGo-
RaS sampling method in the ability to use the SMILES represen-
tations of the molecular species as starting points in sampling the
latent space. This allowed for targeted sampling of the latent
space to generate materials with specific types of properties. This
is possible due to the ability of the VAE to gather knowledge of
physics and chemistry from the dataset it is trained on and to
generate new molecular species beyond the size and descriptions
contained in the training data.

This generational approach opens the possibilities for more in-
depth analysis of these quantum materials. For example, there
is potential for a traditional machine learning analysis to be per-
formed in order to gain a better understanding of the underly-
ing processes. Mainly things such as the covariant estimates of
the different parameters within the network. This would also
help with determining the overfitting of the latent space via the
network’s variance. Another interesting approach that could be
taken to improve the network speed and efficiency, is the au-
tonomous design of the network parameters. While this study was
based on hand-tuned parameters until a stable network could be
created. This leaves a great opportunity for the design of a more
memory-efficient network.
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