Juan
Zhu
ab,
Florian
Fontein
b,
Hong
Wang
b,
Qigang
Zhong
a,
Chenglong
Li
c,
Jianping
Li
a,
Bo
Wang
a,
Liangsheng
Liao
a,
Yue
Wang
c,
Lizhen
Huang
a,
Harald
Fuchs
b,
Wenchong
Wang
*b and
Lifeng
Chi
*a
aInstitute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-ai Road, 215123 Suzhou, China. E-mail: chilf@suda.edu.cn
bPhysikalisches Institut and Center for Nanotechnology, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany. E-mail: wangw@uni-muenster.de
cState Key Laboratory for Supermolecular Structure and Materials College of Chemistry, Jilin University, 2699 Qianjin Street, 130012 Changchun, China
First published on 28th September 2017
Developments in micro-displays have led to great interest in patterning OLEDs on the microscale. However, because organic molecules are fragile in adverse environments, patterning OLEDs on the microscale remains underdeveloped. In this work, the fabrication of Micro-OLEDs via the area-selective growth of hole-transporting material is reported. The active material is selectively deposited on pre-determined areas, and this technique is compatible with photolithography. High-resolution OLEDs with feature sizes as low as sub-micrometer and green-, orange-red- and deep-blue-emitting devices are demonstrated. This technique provides a promising method for the fabrication of high-resolution OLED devices over large areas.
Alternatively, area-selective growth, which allows material to be selectively grown on pre-determined patterns, has been proposed to pattern organic semiconductors.24 The pre-patterns, which can be produced by photolithography, act as nucleation sites for the diffusion of organic semiconductor molecules over the surface under vacuum. The area-selective growth strategy has successfully been applied to different kinds of molecules to achieve functional molecular architectures and improve device performance.25–27
In this work, we report the fabrication of Micro-OLEDs by using the area-selective growth method. The active material was controlled to grow on pre-defined areas, and further processed to create OLED devices. A patterned thin layer of Cr and Au on indium tin oxide (ITO) glass acted as the nucleation site for organic semiconductor molecules, and the ITO glass covered the layered metal structures had a transmittance of 70–75%. The emitting area of the Micro-OLEDs was defined by the pre-structures, where high-resolution structures with feature sizes as low as hundreds of nanometers were achieved. Green-, orange-red- and blue-emitting OLEDs made from the same hole-transporting material, NPB (N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine), were successfully fabricated through this technique. The green-emitting OLED devices (ITO/(Cr + Au)/NPB/tris-(8-hydroxyquinoline)aluminum (Alq3)/Al) showed similar luminescence intensity and threshold voltage to those of the traditional device structure (ITO/NPB/Alq3/Al). This technique is fully compatible with photolithography and provides an alternative method to process OLED devices with high resolution and yield over macroscopic areas.
The mapping images were obtained by using a homemade instrument consisting of an inverted microscope (Nikon Diaphot 300) and a closed-loop piezo scanner (Physik Instrumente P-517.3CL) controlled by a Nanotec SPM controller. The optical signals were detected by the same avalanche photodiode as used for the EL intensity measurement. The output pulses were converted to voltage with the same counter/integrator and measured by the SPM controller.
Fig. 2a shows the AFM height image and profile of the pre-patterns, in which the average height is approximately 5 nm and consists of 2 nm Cr and 3 nm Au. The thickness of the metal layer was optimized for both homogeneous nucleation sites and transmittance, as discussed in the following transmission spectra. The pre-patterns consisted of an array of dots with diameters of 9 μm and spacings of 1.5 μm. NPB was chosen as the hole-transporting material in the OLEDs, because sublimed NPB can be manufactured readily and is abundantly available.29 In the experiments, the substrate temperature was optimized at 220 °C, so that the diffusion length of the molecules was larger than the pattern spacing, and the molecules could be fully controlled to grow only on the Au patterns. Fig. 2b shows the AFM height image and profile of 8 nm NPB (controlled by a microbalance adjacent to the samples) deposited on the sample. The organic molecules were clearly seen to remain only on the Au dots, and more molecules aggregated around the edge of the metal patterns, owing to the collection of molecules deposited on ITO. The average height of the NPB films at the center of the Au dots was approximately 15 nm, and that at the edges was approximately 20 nm. The morphology of NPB depended on the diameter of the Au dots. As the diameter of Au decreased to below 5 μm, the morphology of NPB became dome-like, thus indicating the shift of molecules to the center of the dots. The growth of NPB on the Au pattern with a diameter of 0.5 μm shown in Fig. S2 (ESI†) was taken as an example. The fully area-selective growth is further confirmed by the calculated results in Table S1 (ESI†). It is shown that the amount of NPB on top of Au calculated by AFM software has a negligible error with the total amount of NPB deposited on the whole substrate in both cases.
To fabricate the OLED devices, we deposited 70 nm Alq3, as both the electron-transporting and emitting layer, on the patterned NPB layer after the samples were cooled to room temperature, and then deposited 120 nm Al as the cathode. The electroluminescence of the devices under a drive voltage 18 V was first characterized by optical microscopy between the bottom ITO anode and the Al cathode. The luminescence microscopy image of a device is shown in Fig. 3a. A bright luminescence region was observed at a pitch of 10.5 μm (center-to-center), which coincided with the dimensions of the pre-patterned Au templates. A homemade instrument consisting of an inverted microscope and a closed-loop piezo scanner manipulated by an SPM controller was further used to scan the luminescence patterns under the same voltage. The optical signals were detected with a photodiode, and the output pulses were converted to voltage with a counter/integrator and measured by the SPM controller. The luminescence mapping is shown in Fig. 3b. In the image, the color contrast represents the luminescence intensity. During the 20-minute scanning process of the mapping image, almost no change in the mapping image was observed. Fig. 3c presents the luminescence spectra on Au (red line) and on ITO (black line). Because the limited mapping step size of 2.5 micrometers was larger than the pitch size of 1.5 micrometers, luminescence signals on ITO glass were taken in the vicinity of the patterning area highlighted by the white circle in the lower-left region of Fig. 3a. The luminescence intensity on the Au dots (maximum value is 12000) was much higher than that nearby on ITO glass (maximum value is 300). We believe that the difference in the luminescence intensity on the Au dots and ITO glass would be even greater, owing to the nonnegligible background light produced by the thick layer of NPB particles on the ITO glass substrate. Thus, high-contrast illuminated images can be fabricated through this technique.
Fig. 4a shows the normalized electroluminescence intensity versus the device voltage. The devices fabricated with our technique (red line) showed typical OLED behavior and similar luminance characteristics to those of devices fabricated with the classic structure (ITO/NPB (20 nm)/Alq3 (70 nm)/Al (120 nm)). The relatively higher drive voltage may be attributed to the high barrier between the Fermi level of the cathode and the HOMO level of the organic layer.30–32 The drive voltage can be lowered by inserting a LiF layer before deposition of the Al cathode layer.31 Although the substrate with the thin metal layer used in our technique has a comparatively weaker transmittance, a similar luminescence intensity was realized at the same applied voltage. An energy level difference between the ITO anode and NPB (0.7 eV) is known to provide a high barrier for hole injection in classic devices. It is speculated that the presence of Au (work function: 5.1 eV) decreases this barrier, thus facilitating hole injection and improving the device performance.33 However, the similar turn-on voltage on these two devices shown in Fig. 4a is possibly caused by the strong interfacial dipole formed at the metal/organic interface, the chemical residual in the e-beam lithography process or the alloy formation between interfaces, which will be further investigated in the future experiments.34–36 The transmittance of the transparent electrodes, so that the luminescence can pass through, is one of the most important parameters in evaluating the properties of OLED devices. Fig. 4b shows the transmittance spectra as a function of wavelength in the range of 250–800 nm for the samples tested in the experiments. The ITO-coated glass (black line) possessed the greatest transmittance of up to 90%. The blue and dark-blue lines represented the transmittance spectra of 3 nm and 8 nm Au, respectively, on ITO glass substrates coated with a 2 nm adhesion Cr layer. The transmittance clearly decreased as the thickness of Cr and Au coated on the ITO glass increased. The transmittance was further characterized after annealing at 220 °C to simulate the NPB deposition process. The transmittance of the sample deposited with 2 nm Cr and 8 nm Au after annealing, indicated by the green line, overlapped with the previous dark-blue line. Therefore, no change occurred in the transmittance spectrum of the film after annealing, a result consistent with the continuous thick Au film possessing a strong absorption at 450 nm.37 In comparison, the transmittance of the 2 nm Cr and 3 nm Au film on ITO glass at 560 nm increased from 60% (blue line) to 75% (pink line) after annealing. Only a slight change occurred in the transmittance of the 2 nm Cr film on ITO glass at 560 nm after annealing, increasing from 80% (black line) to 85% (red line), as shown in Fig. S3 (ESI†). The transmittance increase after annealing indicated lower surface roughness and better homogeneity, which was further verified by the AFM height images of the sample with 2 nm Cr and 3 nm Au after annealing, shown in Fig. S4, in which the sample had a higher surface roughness before annealing (before: 0.85; after: 0.73). The formation of an alloy between Cr, ITO and/or Au when the sample is annealed at high temperature has been predicted to cause the improved homogeneity and transmittance.38 Although the substrate with a thin Cr layer has a higher transmittance, Au has a higher work function, which can thus improve hole injection in the OLED devices. Therefore, the optimal film was composed of 2 nm Cr, for better adhesion, and 3 nm Au.
This technique was further extended to create Micro-OLEDs with arbitrary shapes. High-resolution emitting dot patterns with a diameter of 0.5 μm are shown in Fig. 5a. AFM height images of the Au dots and after NPB growth are exhibited in Fig. S2 (ESI†). The morphology of the organic materials on the Au dots was consistent with that shown in the schematic diagram (Fig. 1b). Luminescence patterns with large sizes and spacings were also fabricated with this technique for example, the letters ‘OLED’ with a 20 μm line width were fabricated and are exhibited in Fig. 5b. The feasibility of this technique was further characterized using an orange-red-emission system based on ITO/NPB (20 nm)/Alq3:DCM (35 nm, 1%)/Alq3 (35 nm)/Al, as well as a deep-blue-emission system based on ITO/NPB (20 nm)/PPI-PPITPA (30 nm)/TPBI (50 nm)/Al (120 nm). The molecular and device structures can be found in Fig. S1 and S5 (ESI†). A small amount of DCM (4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran) was physically doped in the emitting layer, which changes the color of the emitted light from green to orange-red.39 PPI-PPITPA is an excellent deep-blue luminescent material, which has an ideal donor-accept molecular structure and packing in the solid state and small singlet–triplet splitting.28 Orange-red and deep-blue emission patterns are shown in Fig. 5c and d, respectively. The blue, orange-red and green emissions were further characterized by spectrophotometer. Fig. 5e shows the corresponding luminescence spectra of the three different color devices, where the signal peaks are located at the typical locations for deep-blue, green and orange-red (460 nm, 528 nm and 625 nm, respectively). This technique was thus demonstrated to be an easily used method for patterning OLEDs with different emission colors via area-selective growth.
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/c7qm00383h |
This journal is © the Partner Organisations 2017 |