Issue 3, 2021

Magnetic skyrmions for unconventional computing

Abstract

Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendous attention has been focused on the continuous scaling of Moore's law as well as the advanced non-von Neumann computing architecture. A rich variety of unconventional computing paradigms has been devised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing due to their potential as the smallest information carriers by exploiting their physics and dynamics. In this paper, we provide an overview of the recent progress of skyrmion-based unconventional computing from a joint device-application perspective. This paper aims to build up a panoramic picture, analyze the remaining challenges, and most importantly to shed light on the outlook of skyrmion based unconventional computing for interdisciplinary researchers.

Graphical abstract: Magnetic skyrmions for unconventional computing

Article information

Article type
Review Article
Submitted
07 10 2020
Accepted
18 11 2020
First published
20 11 2020

Mater. Horiz., 2021,8, 854-868

Magnetic skyrmions for unconventional computing

S. Li, W. Kang, X. Zhang, T. Nie, Y. Zhou, K. L. Wang and W. Zhao, Mater. Horiz., 2021, 8, 854 DOI: 10.1039/D0MH01603A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements