Issue 6, 2024

Combined effect of Cu0 and oxygen vacancies in Cu-based zeolites enables highly efficient photo-Fenton-like performance for water purification

Abstract

The Cu-based heterogeneous photo-Fenton-like process has emerged as a promising technology in wastewater treatment, but efficient light harvesting and sufficient utilization of photogenerated electrons are still core issues. Herein, a dual strategy was proposed to achieve the high-efficiency removal of refractory organic pollutants using a Cu-doped zeolite with Cu0 and oxygen vacancies (Cu0@CuZ) in the photo-Fenton-like reaction. This is the first time that such a strategy employing Cu-based zeolites has been used. Cu0@CuZ can completely degrade 20 mg L−1 phenol within 15 min under visible-light irradiation, and the rate constant was 40, 55, and 65 times higher than Cu2O, CuO, and Cu0, respectively. Cu0@CuZ also presented excellent degradation performance for other typical refractory organic pollutants, surpassing most of the reported Cu-based catalysts to date. This superior performance highly depends on oxygen vacancies (Vo) and plasmonic Cu nanoparticles. The introduction of Vo and the creation of the surface plasmon resonance effect greatly enhanced the visible-light harvesting ability of the catalyst. Impressively, Vo and Cu0 nanoparticles served as dual-channels for efficient electron transfer by enriching and then transferring photogenerated electrons to Cu(II), greatly expediting the reduction of Cu(II) to Cu(I). The synergistic effects of the dual-channel electron transfer and light-harvesting ability achieved sustained Cu(II)/Cu(I) cycling, thereby promoting H2O2 activation to produce more active species for organic pollutant degradation. This work provides an ingenious strategy to rationally establish a high-efficiency photo-Fenton-like catalyst for water remediation.

Graphical abstract: Combined effect of Cu0 and oxygen vacancies in Cu-based zeolites enables highly efficient photo-Fenton-like performance for water purification

Supplementary files

Article information

Article type
Paper
Submitted
05 3 2024
Accepted
09 4 2024
First published
25 4 2024

Environ. Sci.: Nano, 2024,11, 2481-2493

Combined effect of Cu0 and oxygen vacancies in Cu-based zeolites enables highly efficient photo-Fenton-like performance for water purification

W. Zhang, L. Wang, C. Hou, Z. Zhu, E. Lichtfouse, C. Trapalis and C. Wang, Environ. Sci.: Nano, 2024, 11, 2481 DOI: 10.1039/D4EN00181H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements