Functionalized ZIF-8 as a versatile platform for drug delivery and cancer therapy: strategies, challenges and prospects
Abstract
This review discusses the functionalization strategies of ZIF-8 and challenges and future developments in ZIF-8-based platforms for drug delivery and cancer therapy. We systematically evaluate a series of innovative ZIF-8 functionalization methods, including atomic doping, introduction of targeting molecules, and biomimetic mineralization technology, to achieve precise drug release. These functionalization strategies significantly enhance the targeted delivery and controlled release properties of ZIF-8, broaden the diversity of drug delivery systems, maximize therapeutic effects, and minimize systemic toxicity. In addition, this review explores the important role of ZIF-8 in tumor therapy. Its ability to encapsulate multiple therapeutic agents and its responsiveness to the tumor microenvironment significantly improve the therapeutic effect and reduce the side effects of traditional treatments. By integrating multiple therapeutic agents and performing surface modification, ZIF-8-based platforms may provide personalized and efficient treatment options for drug-resistant or recurrent cancers. This review also comprehensively discusses the synthesis methods, drug loading capacity, and potential clinical applications of ZIF-8, emphasizing the need to optimize its large-scale production and reproducibility. In addition, further studies on the long-term biocompatibility and biodegradability of ZIF-8-based systems are essential to ensure their safety in long-term treatment. In summary, this review highlights the structural advantages and significant therapeutic potential of ZIF-8 and calls for the transition of ZIF-8 from laboratory research to clinical application to provide more targeted, efficient, and friendly cancer treatment options.
- This article is part of the themed collection: Journal of Materials Chemistry B Recent Review Articles