Hierarchical tandem assembly of planar [3×3] building units into {3×[3×3]} oligomers: mixed-valency, electrical conductivity and magnetism†
Abstract
A hierarchical tandem assembly – coordination, oligomerisation and supramolecular organization – is identified using MALDI-TOF of the solid products of the solvothermal reaction of 5,5′-pyridyl-3,3′-bi-1H-pyrazole with CuSO4·5H2O in CH3OH–CH3CN. The initial coordination leads to a [3×3] [CuI4CuII5(L)6] (SO4)·2CH3OH (Cu9) grid followed by oligomerisation to a 3×[3×3] [CuI6CuII21(L)18(CN)6(SO4)](SO4)2·8CH3CN (Cu27) grid through bridging sulfate and in situ generated cyanide with time and subsequent supramolecular organization. The isolated silvery lustrous crystals, Cu9 and Cu27, are good electrical conductors, with conductivities of 3.2 × 10−2 and 5.4 × 10−3 S cm−1, respectively, due to the mixed valency. Their magnetic properties are dominated by antiferromagnetic interactions. DFT and band structure calculations confirm their valence distribution and semiconducting behavior. The planarity of the large 3×[3×3] Cu27 and its electro-activity renders it suitable for the development of large surface area molecular devices.
- This article is part of the themed collection: 2018 Chemical Science HOT Article Collection