Issue 40, 2023

A cascade nanoplatform for the regulation of the tumor microenvironment and combined cancer therapy

Abstract

Recently, disulfiram (DSF), an anti-alcoholism drug, has attracted increasing biomedical interest due to its anticancer effects. However, the anticancer activity of DSF is Cu(II)-dependent and it is extremely unstable, which severely hinders its clinical translation. Herein, we report the fabrication of a multifunctional nanoplatform (MCDGF) that can improve the stability of diethyldithiocarbamate (DTC), a main metabolite of DSF, by modifying the aryl boronic ester group to form a prodrug (DQ), and also realize the in situ generation of Cu(DTC)2, which relies on a cascade reaction. The delivered Cu/DQ induces immunogenic cell death (ICD) and powerfully enhances immune responses of cytotoxic T lymphocytes (CTLs) and the infiltration of dendritic cells as well as T cells. Furthermore, the grafted glucose oxidase (GOx) decomposes glucose, thus “starving” the cancer cells and providing H2O2 for the production of Cu(DTC)2. More importantly, H2O2 significantly promotes the polarization of macrophages to the anti-tumor subtype. The nano-carrier “mesoporous polydopamine (MPDA)” also displays a good photothermal therapeutic effect. The nanoplatform-integrated chemotherapy, starvation therapy, photothermal therapy, and immunotherapy synergistically stimulated CTL activation and M1 macrophage polarization. Taken together, the as-prepared nanoplatform could regulate the tumor immune microenvironment and eliminate cancer with combined cancer therapy, which will offer a promising strategy for cancer treatment and promote the clinical application of DSF in breast cancer.

Graphical abstract: A cascade nanoplatform for the regulation of the tumor microenvironment and combined cancer therapy

Supplementary files

Article information

Article type
Paper
Submitted
02 7 2023
Accepted
13 9 2023
First published
21 9 2023

Nanoscale, 2023,15, 16314-16322

A cascade nanoplatform for the regulation of the tumor microenvironment and combined cancer therapy

X. Hu, W. Zhao, R. Li, K. Chai, F. Shang, S. Shi and C. Dong, Nanoscale, 2023, 15, 16314 DOI: 10.1039/D3NR03199C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements