Surface-engineered core–shell upconversion nanoparticles for effective hypericin delivery and multimodal imaging†
Abstract
Early diagnosis and treatment of cancer is rapidly advancing thanks to the development of nanotechnology. Here, upconversion nanoparticles (UCNPs) are particularly promising as they are finding a wide range of applications in drug delivery and tumor imaging. In this report, a novel UCNP-based transport system is proposed for the delivery of the hypericin (Hyp) photosensitizer into malignant tumors. Core–shell NaYF4:Yb3+,Er3+@NaYF4:Nd3+ UCNPs were prepared by thermal decomposition and coated with poly(N,N-dimethylacrylamide-co-2-aminoethyl acrylate)-alendronate [P(DMA-AEA)-Ale], which endowed them with colloidal and chemical stability; finally, Hyp was conjugated. Internalization of CS-UCNP@P(DMA-AEA)-Ale-Hyp nanoparticles by Jurkat cells was successfully validated by multimodal imaging using a microstructural chamber, upconversion luminescence, and Raman microspectroscopy. After irradiation at 590 nm, CS-UCNP@P(DMA-AEA)-Ale-Hyp nanoparticles provided a markedly more effective photodynamic effect than Hyp alone at identical Hyp concentrations due to apoptosis as confirmed by caspase-3 activation. MTT assays showed that Hyp-free nanoparticles were non-cytotoxic, whereas CS-UCNP@P(DMA-AEA)-Ale-Hyp particles significantly reduced cell viability after irradiation. Considering that Hyp release from the nanoparticles was higher in the acidic environment typical of tumors compared to physiological ones, UCNP@P(DMA-AEA)-Ale-Hyp particles are a suitable candidate for future in vivo applications.
- This article is part of the themed collection: UPCON24 – Upconversion Nanomaterials