Arylation of gold nanoclusters and insights into structure-related CO2 reduction reaction performances

Abstract

Research on arylgold complexes and ligand-protected gold nanoclusters has proceeded independently thus far due to the difficulty in controllably introducing aryl groups to synthesize arylgold nanoclusters. Herein we synthesized an arylgold Au15 nanocluster, Au15(DPPOE)3(S-PhpMe)4(Ph)2, thereby bridging the two independent research fields. Tetraarylborates were exploited as arylating agents to transfer aryl groups onto the nanocluster kernel, triggering the arylation of the Au15 cluster while maintaining the molecular framework. Furthermore, two other arylgold Au15 nanoclusters with halogenated surfaces were controllably synthesized by substituting the arylating agent NaBPh4 with its benzene ring-halide derivatives. In addition, the change in the electronic structure from Au-SR to Au-aryl and the energetics of the arylation process from Au15-SR to Au15-Ph were elucidated computationally. Furthermore, the catalytic capability of the two Au15 nanoclusters with nuanced ligand differences was investigated in the electrochemical reduction of CO2, and the comparable reactivity of the two cluster-based nanocatalysts was theoretically rationalized. Our findings have cross-fertilized the fields of arylgold complexes and gold nanoclusters, pointing toward a new avenue of exploration for novel arylgold nanoclusters.

Graphical abstract: Arylation of gold nanoclusters and insights into structure-related CO2 reduction reaction performances

Supplementary files

Article information

Article type
Edge Article
Submitted
15 2 2025
Accepted
05 5 2025
First published
12 5 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Arylation of gold nanoclusters and insights into structure-related CO2 reduction reaction performances

C. Zhu, B. Li, C. Li, L. Lu, H. Li, X. Yuan, X. Kang, D. Jiang and M. Zhu, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC01200G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements