Nanostructured conductive polymers: synthesis and application in biomedicine
Abstract
Conductive polymers (CPs), distinguished by their sp2-hybridized carbon backbone, offer remarkable electrical conductivity while maintaining the advantageous mechanical flexibility and processing characteristics typical of organic polymers. Compared to their bulk counterparts, nanostructured CPs exhibit unique physicochemical properties, such as large surface areas and shortened charge/mass transport pathways, making them promising candidates for various applications. This mini review explores various synthesis methodologies for nanostructured CPs, including electrospinning, hard templating, and soft templating techniques, while elucidating their advantages and disadvantages. Additionally, the burgeoning biomedical applications of nanostructured CPs are highlighted, including drug delivery, neural electrodes and interfaces, nerve regeneration, and biosensing, demonstrating their potential to significantly advance contemporary biomedical science.
- This article is part of the themed collection: Journal of Materials Chemistry B Recent Review Articles