Towards green mobility: investigating hydrogen-enriched waste plastic biodiesel blends with n-butanol for sustainable diesel engine applications

Abstract

This study examines the performance of pyrolyzed waste plastic biodiesel (WPO) in a compression ignition engine when combined with n-butanol and enriched hydrogen (H2). Initially, low-density polyethylene (LDPE) plastic waste underwent conversion into waste plastic biodiesel via a pyrolysis thermochemical process. Experiments were conducted to evaluate blends consisting of 30% and 40% waste plastic biodiesel. In order to enhance the physical properties of the WPO, an additive consisting of 5% n-butanol (nBut5) was introduced, with the objective of improving combustion performance and minimizing exhaust emissions. Furthermore, enriched hydrogen was delivered to the combustion chamber via the inlet manifold at flow rates of 8 and 10 liters per minute (lpm). The findings indicated that the 40% WPO combined with 5% n-butanol demonstrated combustion properties that are similar to those of traditional diesel fuel. Moreover, the integration of the 40 WPO + nBut5 blend with 10 lpm enriched hydrogen resulted in a notable reduction in brake specific fuel consumption (BSFC) by 20.89% and an enhancement in brake thermal efficiency (BTE) by 8.22%, alongside a decrease in exhaust emissions, which included a reduction in carbon monoxide (CO) by 43.84%, unburned hydrocarbons (UBHC) by 57.8 ppm, and smoke opacity by 14.70%. Nonetheless, there was a notable increase in nitrogen oxide (NOx) emissions, which went up by 236 ppm when compared to conventional diesel fuel.

Graphical abstract: Towards green mobility: investigating hydrogen-enriched waste plastic biodiesel blends with n-butanol for sustainable diesel engine applications

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
03 1 2025
Accepted
29 3 2025
First published
15 4 2025
This article is Open Access
Creative Commons BY-NC license

Energy Adv., 2025, Advance Article

Towards green mobility: investigating hydrogen-enriched waste plastic biodiesel blends with n-butanol for sustainable diesel engine applications

G. S., T. K., J. S. and S. Chandaka, Energy Adv., 2025, Advance Article , DOI: 10.1039/D5YA00002E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements