Interface engineering strategies for enhanced electrocatalytic hydrogen evolution reaction
Abstract
Producing hydrogen as a clean and sustainable fuel source requires an in-depth understanding of the hydrogen evolution reaction (HER), which plays a pivotal role in energy conversion processes. Recently, significant interest has been expressed in utilizing transition-metal-based nanomaterials as potential electrocatalysts for the HER owing to their exceptional electrical properties, versatile surface chemistry, and robust catalytic activity. These nanomaterials could enhance the efficiency of hydrogen production when carefully engineered at the interface level. Interface engineering has emerged as a critical strategy for optimizing the surface and interfacial characteristics of nanomaterials, thereby improving their catalytic efficiency. This review provides a comprehensive and detailed overview of the various aspects of interface engineering in the context of transition metal-based nanomaterial electrocatalysts specifically tailored for the HER. The fundamental characteristics of interfaces are described and their role in influencing catalytic performance is emphasized. Key factors, such as atomic arrangements, grain boundaries, and surface imperfections, are explored to better understand their impact on catalytic activity. A range of innovative interface engineering techniques have been used to enhance the catalytic performance of nanomaterial-based electrocatalysts. The techniques include the creation of heterostructures that allow for improved charge separation and enhanced catalytic sites, development of core–shell architectures that can protect active sites while optimizing their accessibility, and manipulation of phase transitions to achieve desirable catalytic properties. Additionally, alloying techniques and the incorporation of single-atom catalysts, which are methods used to fine-tune the electronic and structural attributes of nanomaterials, are discussed. Furthermore, this review highlights recent advancements and prospective pathways in the electrocatalytic processes of the HER and features emerging technologies/methodologies. The review concludes with a thorough discussion of the limitations of nanomaterials, particularly those related to interface stability, scalability, and commercialization of efficient HER electrocatalysts. By providing a detailed examination of the latest innovations and challenges in interface engineering, this paper offers valuable perspectives and guidance for future research and real-world applications aimed at advancing the development of highly efficient electrocatalysts for sustainable hydrogen production.
- This article is part of the themed collection: Research advancing UN SDG 7: Affordable and clean energy