Dalton Transactions

9766

Cite this: Dalton Trans., 2016, 45

Received 5th February 2016, Accepted 4th March 2016

DOI: 10.1039/c6dt00522e

<www.rsc.org/dalton>

Electrochemical and chemical routes to hydride loss from an iridium dihydride†

A. G. Walden,^a A. Kumar, ^{b,c} N. Lease, ^b A. S. Goldman^b and A. J. M. Miller^{*a}

With a view towards replacing sacrificial hydrogen acceptors in alkane dehydrogenation catalysis, electrochemical methods for oxidative activation of a pincer-ligated iridium hydride intermediate were explored. A 1H⁺/2e[−] oxidation process was observed in THF solvent, with net hydride loss leading to a reactive cationic intermediate that can be trapped by chloride. Analogous reactivity was observed with the concerted hydride transfer reagent Ph_3C^+ , connecting chemical and electrochemical hydride loss pathways.

Iridium complexes supported by tridentate R_4 PCP (R_4 PCP = κ^3 -C₆H₃-2,6-(CH₂PR₂)₂) pincer ligands are prolific dehydrogenation catalysts, enabling landmark transformations such as the dehydrogenation,^{1,2} metathesis,³ coupling^{4,5} and dehydroaromatization⁶ of alkanes.⁷ Efficient dehydrogenation reactions require a sacrificial hydrogen acceptor, typically an olefin. The hydrogen acceptor alters the overall reaction thermodynamics and activates the iridium dihydride species. $7-9$ In transfer dehydrogenation, catalyst activation occurs by insertion of the sacrificial olefin into one Ir–H bond, followed by C–H bond-forming reductive elimination with the other Ir–H bond, generating a highly reactive 14e[−] intermediate capable of alkane C–H bond activation (Scheme 1).

The requirement of an added stoichiometric reagent represents a significant limitation in dehydrogenation reactions.8,10 In considering new strategies to promote dehydrogenation reactions, we were drawn to electrochemical methods that could decouple the catalyst activating and hydrogen accepting steps. $11,12$ We envisioned electrochemical oxidation of $(^{R_4}PCP)Ir(H)_2$ at an anode, generating a catalytic intermediate while releasing 2H⁺/2e⁻ (Scheme 1) that could be used to drive any range of reactions at the cathode.

Electrochemical dehydrogenation relies on (sometimes coupled) electron transfer and proton transfer steps, $13,14$ while chemical dehydrogenation often involves concerted hydride transfer.^{7,15,16} Recent reports have started to draw connections between chemical and electrochemical processes, however. For example, inspired by a report of (R⁴PCP)Ir-catalyzed hydrogenation of $CO₂$ to formate,¹⁷ Brookhart and Meyer developed an analogous electrochemical reduction of $CO₂$ to formate catalyzed by $(^{tBu_4}POCOP)$ Ir complexes $(^{tBu_4}POCOP = \kappa^3-C_6H_3-2,6$ $(\text{OP}^t \text{Bu}_2)_2$.¹⁸⁻²⁰ A striking oxidative example involves two different catalysts for the same alcohol oxidation reaction that operate by two different mechanisms, either a concerted H_2 loss mechanism or an outer-sphere electron transfer mechanism in which a chemical oxidant (not an electrode) and a base facilitate 2H⁺/2e⁻ loss.²¹

^aDepartment of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA. E-mail: ajmm@email.unc.edu

^bDepartment of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, USA

^cDepartment of Chemistry, Indian Institute of Technology Guwahati,

Guwahati - 781039, Assam, India

[†]Electronic supplementary information (ESI) available: Experimental details, electrochemical data, and NMR spectra. See DOI: 10.1039/c6dt00522e

Studies of electrochemical reactions that parallel wellknown organometallic oxidations can help bridge the divide between chemical and electrochemical methods. This report focuses on the oxidation of a pincer-ligated iridium dihydride. Net loss of hydride $(H⁺/2e⁻)$ is promoted by *either* electrochemical or chemical methods to produce an iridium monohydride species.

The dihydride complex was prepared according to previously reported procedures by dehydrohalogenation of $({}^{\text{tBu}_4}$ PCP)Ir(H)(Cl) (1) under an H₂ atmosphere.^{1,22} This procedure affords a mixture of the five-coordinate dihydride $({}^{\text{tBu}_4}$ PCP)Ir $(H)_2$ (2) and $({}^{\text{tBu}_4}$ PCP)Ir $(H)_4$ (3).²³ Samples could be stirred in pentane, filtered, and dried under vacuum to remove the dihydrogen ligand and provide pure 2.‡

The oxidation of dihydride 2 was initially explored using cyclic voltammetry (CV). When a solution of 2 in argon-saturated THF containing $[Bu_4N][PF_6]$ supporting electrolyte was assessed by a CV sweep to oxidative potentials, a single irreversible feature was observed at -0.08 V vs. Cp₂Fe^{+/0} (Fig. 1). No return reduction process was apparent, even as the scan rate was increased to 1 V s^{-1} .

An irreversible electrochemical oxidation is consistent with a rapid chemical reaction following electron transfer from 2 to the electrode. The dihydride 2 is more easily oxidized than the hydridochloride complex 1, which exhibited a quasi-reversible oxidation around 0.5 V vs. $Cp_2Fe^{+/0}$ in CH_2Cl_2 at fast scan rates in a prior study. 24

To identify the product formed at positive potentials under argon, a controlled potential electrolysis experiment was carried out. A high-surface-area reticulated vitreous carbon working electrode was submersed in a THF solution of dihydride 2 and polarized to 0.2 V vs. $\text{Cp}_2\text{Fe}^{+/0}$. The flow of current diminished as a gradual color change from pale orange to pale yellow was observed. The oxidation passed 239 mC of charge, corresponding to 1.9 e[−] per Ir, but an aliquot analyzed by ³¹P{¹H} NMR spectroscopy revealed a mixture of species.

Considering the possibility that oxidation of 2 would produce a reactive cationic species, 25 the oxidative electrochemistry was also carried out in the presence of a chloride ion source as a trapping agent. In the presence of LiCl (and

Fig. 1 Cyclic voltammetry of 2 at 25 mV s⁻¹ (black), 100 mV s⁻¹ (red), and 250 mV s⁻¹ (blue) in THF solution with 0.1 M [Bu₄N][PF₆] electrolyte. Glassy carbon working electrode, platinum counter electrode, Ag wire pseudo-reference electrode, 298 K.

with conditions otherwise similar to those described above), the CV response of 2 was essentially unchanged relative to chloride-free conditions, suggesting that chloride does not influence the initial oxidation process.

Controlled potential electrolysis of a THF solution containing 2 and excess LiCl or $\left[\text{Bu}_4\text{N}\right]\left[\text{Cl}\right]$ was conducted at 0.2 V vs. $\text{Cp}_2\text{Fe}^{+/0}$ (Scheme 2). In the presence of chloride, the solution color changed from pale orange to a much brighter orange, and the 283 mC of charge passed corresponds to a 2e[−] oxidation (2.3 e⁻ per Ir). Analysis by ³¹ $P{^1H}$ NMR spectroscopy now revealed a single phosphorous-containing species $(\delta 69)$. The product was isolated from the electrolyte by removal of the THF under vacuum and extraction with pentane. Full NMR spectroscopic analysis in THF- d_8 showed a triplet hydride resonance far upfield $(\delta -42.9)$ in the ¹H NMR spectrum that is diagnostic of $(^{tBu_4}PCP)Ir(H)$ (Cl) (1). All of the ³¹P and ¹H NMR signals closely matched the previously reported values.²² **Out on Terrescelone** Stations was apparent and in parallel well-

become one produced on the photographe individue of the dividue of the creative Commons are the common the produced on the produced unter-dividue on the p

The electrochemical conversion of dihydride 2 to hydridochloride 1 represents a net hydride abstraction via the loss of $2e^-$ to the anode and loss of H⁺ (to solution or perhaps to a surface site on the electrode), followed by chloride binding. This two-step electrochemical–chemical (EC) transformation is consistent with the irreversible CV response (prior studies of (pincer)Ir(H)(Cl) also implicated an EC mechanism, but did not identify a product).²⁴ The stability of the product, hydridochloride 1, towards further oxidation at the potentials applied during electrolysis is critical to the success of the reaction. 24

Analogous electrochemical hydride loss via a two-electron/ one-proton oxidative process has been reported for a series of Group 6 complexes of the type CpM(CO)₃H (M = Cr, M, W),²⁶ which may involve a concerted proton-coupled electron transfer event in the tungsten case.²⁷ In contrast, the Rh analogue $({}^{\text{tBu}}{}_{4}\text{PCP})\text{Rh}(H_{2})$, which is best described as a Rh(1) dihydrogen complex,²⁸ does not undergo oxidative hydride loss: reversible 1e[−] oxidation is observed in CH₂Cl₂, and H₂ loss is observed in coordinating solvents.²⁹

To further probe the hydride transfer reactivity, chemical methods that could effect an analogous hydride loss were explored. When dihydride 2 is allowed to react with the hydride abstractor $[Ph_3C][B(C_6F_5)_4]$ in THF- d_8 , the solution changes color from pale orange to pale yellow. NMR spectroscopic monitoring revealed a mixture of products analogous to those observed in the initial electrolysis.

Hydride abstraction was next attempted in the presence of a chloride source. Treatment of dihydride 2 with 1 equiv. $[Ph_3C][B(C_6F_5)_4]$ and 5 equiv. $[Bu_4N][Cl]$ led to a color change from pale orange to a much brighter orange, coinciding with

Scheme 3

the appearance of the characteristic signals of hydridochloride complex 1 by ${}^{31}P{^1H}$ and ${}^{1}H$ NMR spectroscopy (Scheme 3). Triphenylmethane is also observed by ${}^{1}\mathrm{H}$ NMR spectroscopy, clearly identifying the fate of the hydride.

We suggest that the electrochemical and chemical hydride abstractions proceed via a shared intermediate, given the similar product distributions under various reaction conditions. As shown in Scheme 4, we hypothesize that oxidation of dihydride 2 occurs as a net $1H^+/2e^-$ process (via one of the pathways described above) to generate a reactive monohydride cation, $[(^{tBu}₄PCP)^T(H)]⁺(4)$. Chemical hydride transfer from 2 to $[Ph_3C][B(C_6F_5)_4]$ would also afford 4. We are not aware of any prior reported isolation of cation 4. An analogous $[({}^{tBu}_{4}POCOP]Ir(H)]^{+}$ species, isolated as an acetone or dichloromethane adduct, is an active hydrosilylation catalyst. $30,31$ Communication Determines are the characteristic spin of \mathbb{R}^n (\mathbb{R}^n (\mathbb{R}^n (\mathbb{R}^n (\mathbb{R}^n) \mathbb{R}^n

From this shared intermediate cation 4, trapping with chloride ion can generate the hydridochloride 1. In the absence of chloride, we suspect that cation 4 decomposes through reactions with itself and/or the solvent, the details of which are currently under investigation. The observation of identical products under electrochemical and chemical reaction conditions suggests that future electrochemical oxidations (even in non-polar solvents) $32-34$ can be modeled after existing hydride abstraction reactions.

By implicating a key monohydride cation intermediate and building an analogy between well-defined organometallic hydride abstraction reactions and electrochemical oxidation processes, these joint chemical/electrochemical studies provide a foundation for future development of electrochemical dehydrogenation processes.

Acknowledgements

The authors acknowledge funding from NSF Center for Enabling New Technologies through Catalysis (CENTC), CHE-1205189. The Templeton group generously provided access to an argon-filled glovebox.

‡Solutions containing hydrides 2 and 3 are stable under Ar or H2, but decompose under N_2 or air to a mixture of products with distinct electrochemical responses.³⁵

- 1 M. Gupta, C. Hagen, R. J. Flesher, W. C. Kaska and C. M. Jensen, Chem. Commun., 1996, 2083–2084.
- 2 A. Kumar, T. Zhou, T. J. Emge, O. Mironov, R. J. Saxton, K. Krogh-Jespersen and A. S. Goldman, J. Am. Chem. Soc., 2015, 137, 9894–9911.
- 3 A. S. Goldman, A. H. Roy, Z. Huang, R. Ahuja, W. Schinski and M. Brookhart, Science, 2006, 312, 257–261.
- 4 D. C. Leitch, Y. C. Lam, J. A. Labinger and J. E. Bercaw, J. Am. Chem. Soc., 2013, 135, 10302–10305.
- 5 J. A. Labinger, D. C. Leitch, J. E. Bercaw, M. A. Deimund and M. E. Davis, Top. Catal., 2015, 58, 494–501.
- 6 R. Ahuja, B. Punji, M. Findlater, C. Supplee, W. Schinski, M. Brookhart and A. S. Goldman, Nat. Chem., 2011, 3, 167– 171.
- 7 J. Choi, A. H. Roy MacArthur, M. Brookhart and A. S. Goldman, Chem. Rev., 2011, 111, 1761–1779.
- 8 K. Krogh-Jespersen, M. Czerw, N. Summa, K. B. Renkema, P. D. Achord and A. S. Goldman, J. Am. Chem. Soc., 2002, 124, 11404–11416.
- 9 K. B. Renkema, Y. V. Kissin and A. S. Goldman, J. Am. Chem. Soc., 2003, 125, 7770–7771.
- 10 W. Xu, G. P. Rosini, K. Krogh-Jespersen, A. S. Goldman, M. Gupta, C. M. Jensen and W. C. Kaska, Chem. Commun., 1997, 2273–2274.
- 11 P. Driscoll, E. Deunf, L. Rubin, O. Luca, R. H. Crabtree, C. Chidsey, J. Arnold and J. Kerr, ECS Trans., 2011, 35, 3–17.
- 12 B. Rausch, M. D. Symes and L. Cronin, J. Am. Chem. Soc., 2013, 135, 13656–13659.
- 13 C. Costentin, M. Robert and J.-M. Savéant, Chem. Rev., 2010, 110, PR1–PR40.
- 14 D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty and T. J. Meyer, Chem. Rev., 2012, 112, 4016–4093.
- 15 S. E. Clapham, A. Hadzovic and R. H. Morris, Coord. Chem. Rev., 2004, 248, 2201–2237.
- 16 C. R. Waidmann, A. J. M. Miller, C.-W. A. Ng, M. L. Scheuermann, T. R. Porter, T. A. Tronic and J. M. Mayer, Energy Environ. Sci., 2012, 5, 7771–7780.
- 17 R. Tanaka, M. Yamashita and K. Nozaki, J. Am. Chem. Soc., 2009, 131, 14168–14169.
- 18 P. Kang, C. Cheng, Z. Chen, C. K. Schauer, T. J. Meyer and M. Brookhart, J. Am. Chem. Soc., 2012, 134, 5500–5503.
- 19 P. Kang, T. J. Meyer and M. Brookhart, Chem. Sci., 2013, 4, 3497–3502.
- 20 P. Kang, S. Zhang, T. J. Meyer and M. Brookhart, Angew. Chem., Int. Ed., 2014, 53, 8709–8713.
- 21 P. J. Bonitatibus, S. Chakraborty, M. D. Doherty, O. Siclovan, W. D. Jones and G. L. Soloveichik, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 1687–1692.
- 22 C. J. Moulton and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1976, 1020–1024.
- 23 T. J. Hebden, K. I. Goldberg, D. M. Heinekey, X. Zhang, T. J. Emge, A. S. Goldman and K. Krogh-Jespersen, Inorg. Chem., 2010, 49, 1733–1742. Open Transactions Workshapes Articles. Subseq To 2016. Downloaded on 2016. Downloaded on 2025-024-2014. Downloaded on 2025-024-2014. Downloaded on 2025-0221. The Creative Commons Articles. The Article is licensed under a C
	- 24 F. Novak, B. Speiser, H. A. Y. Mohammad and H. A. Mayer, Electrochim. Acta, 2004, 49, 3841–3853.
	- 25 M. Gupta, W. C. Kaska and C. M. Jensen, Chem. Commun., 1997, 461–462.
	- 26 O. B. Ryan, M. Tilset and V. D. Parker, J. Am. Chem. Soc., 1990, 112, 2618–2626.
	- 27 M. Bourrez, R. Steinmetz, S. Ott, F. Gloaguen and L. Hammarström, Nat. Chem., 2015, 7, 140–145.
	- 28 K. Huang, J. H. Han, C. B. Musgrave and E. Fujita, Organometallics, 2007, 26, 508–513.
- 29 M. D. Doherty, S. J. Konezny, V. S. Batista and G. L. Soloveichik, J. Organomet. Chem., 2014, 762, 94–97.
- 30 J. Yang and M. Brookhart, J. Am. Chem. Soc., 2007, 129, 12656–12657.
- 31 J. Yang and M. Brookhart, Adv. Synth. Catal., 2009, 351, 175–187.
- 32 W. E. Geiger and F. Barrière, Acc. Chem. Res., 2010, 43, 1030–1039.
- 33 R. J. LeSuer, C. Buttolph and W. E. Geiger, Anal. Chem., 2004, 76, 6395–6401.
- 34 A. P. Abbott and D. J. Schiffrin, J. Chem. Soc., Faraday Trans., 1990, 86, 1453–1459.
- 35 R. Ghosh, M. Kanzelberger, T. J. Emge, G. S. Hall and A. S. Goldman, Organometallics, 2006, 25, 5668– 5671.