Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Ternary organic solar cells (OSCs), with a simple structure, can be easily adopted as sub-cells in a tandem design, thereby further enhancing the power conversion efficiency (PCE). Considering the potential to surpass the theoretical PCE limit in OSCs, we incorporated a benzo[1,2-b;4,5-b′]dithiophene-based small molecule into a poly(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl):[6,6]-phenyl-C71-butyric acid methyl ester host system. A hitherto unrealized PCE of 12.1% was achieved at the optimized composition of the ternary blend. The ternary blend surprisingly had a face-on and edge-on co-existent texture, which is far better than that of the face-on orientated host film. To the best of our knowledge, this intriguing result refutes for the first time a general paradigm that high-performance OSCs are unambiguously linked to face-on structures. Therefore, our study provides a new platform for refining the theoretical underpinning of multiple blending OSCs.

Graphical abstract: Ternary solar cells with a mixed face-on and edge-on orientation enable an unprecedented efficiency of 12.1%

Page: ^ Top