Materials Advances

REVIEW

Cite this: *Mater. Adv.*, 2021, 2, 4497

Received 17th April 2021, Accepted 2nd June 2021

DOI: 10.1039/d1ma00354b

rsc.li/materials-advances

1. Introduction

The rapid growth of the global population, climate change, and industrial development has significantly affected water quality, resulting in an increasing freshwater crisis worldwide. Considering this, various consumers and polluters of freshwater significantly contribute to freshwater depletion.^{1,2} Among them, the increasingly used dyes including methylene blue (MB), rhodamine B (RhB), methyl orange (MO), Congo red (CR), Disperse Violet 26, methyl red, and crystal violet are the most important sources of industrial pollutants originating from different industries such as the textile, cosmetic, leather, food, pharmaceutical, paint and varnish, and pulp and paper industries (Table 1).^{3–16} According to a

Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review†

Soumi Dutta,^a Bramha Gupta,^a Suneel Kumar Srivastava D^{*b} and Ashok Kumar Gupta*^c

The rapid increase in toxic dye wastewater generated from various industries remains a severe public health issue and prime environmental protection concern, posing a major challenge to existing conventional water treatment systems. Consequently, various physicochemical and biological treatment processes have been studied, which exhibit varying removal abilities depending on their experimental constraints. Among them, adsorption is considered to be the most efficient due to its high removal efficiency, easy operation, cost-effectiveness, and recyclability of the adsorbents. Considering this, the present review article focused on presenting a comprehensive summary of the various types of adsorbents such as commercial activated carbon, metal oxide-based, carbon-based, metal–organic framework, and polymer-based adsorbents used in dye remediation of contaminated water. The effects of several critical factors such as initial dye concentration, solution pH, temperature, and adsorbent dose on the dye adsorption performance are also described. In addition, the adsorption mechanisms responsible for dye removal are explained based on electrostatic attraction, ion exchange, surface complexation, and $\pi-\pi$ interactions. Finally, critiques, future perspectives, and a summary of the present article are given. Various adsorbents such as carbon-based materials, metal oxides, bio-adsorbents, and polymer-based materials, have been shown to be efficient for the removal of dye pollutants from wastewater. Thus, it is anticipated that dye removal by adsorption can provide a feasible solution for the treatment of dye-laden water. **THE SERVIEW SECTION TO THE SERVIE CONSULTER THE SERVIE ON THE SERVIE CONSULTER THE SERVIE CONS**

> recent estimate, about 70 lakh tons of dyes are produced annually worldwide.¹⁷ The release of this industrial waste dye into water jeopardizes human health and the environment. Consequently, research in this area is ongoing, which is obvious from the drastic upsurge in the number of research articles published on 'Dye Removal' in 2016–2020, as displayed schematically in Fig. 1.

> The direct disposal of untreated dye-containing effluent into natural water bodies has an adverse effect on the photosynthetic activity in aquatic ecosystems.¹⁸ It creates mutagenic or teratogenic effects on aquatic organisms and fish species due to the existence of metals¹⁹ and aromatics.²⁰ Further, the presence of dyes in the environment has mild to severe toxic effects on human health, including carcinogenic, mutagenic, allergic, and dermatitis effects, kidney disease. 21 It has been reported that chromiumbased dyes are generally complex in structure and cause carcinogenic effects on human health. 22 Thus, the disposal of dyes in the environment contaminates the water bodies, subsequently affecting the water quality, aquatic life, and human health. Table 1 also describes the ecotoxicological effects of dyes on living organisms. The sources and pathways of various dye pollutants in water bodies are depicted in Fig. 2.

ROYAL SOCIETY
OF CHEMISTRY

 a School of Water Resources, Indian Institute of Technology Kharagpur,

Kharagpur 721302, India

 b Department of Chemistry, Indian Institute of Technology Kharagpur,

Kharagpur 721302, India. E-mail: sunil111954@yahoo.co.uk

^c Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

E-mail: agupta@civil.iitkgp.ac.in

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/d1ma00354b

Type of dye	Example of chemical structure of dye	Examples of dyes Dye application		Solubility in water	Ecotoxicological effects Ref.	
Acid dye	\mathbf{o} Н	Acid yellow 36, Acid orange 7, Acid blue 83, Acid blue 7	Textile, leather, and pharmaceutical industries; nylon, wool, silk, and modified acrylics	Water soluble	Vomiting, nausea, diarrhea, carcinogenic and mutagenic effects	3 and $72 - 75$
Basic dye	Acid red 88	Methylene blue (MB), Basic red 1 Basic yellow 2	Paper, poly- acrylonitrile modified soluble or rhodamine 6G, nylons, and modified polyesters	Water	Altering the chemical and physical properties and 77 of water bodies and causing detrimental effects to the flora and fauna	3, 72, 76
Direct dye	Basic blue 26	Congo red (CR), Direct red 28, Direct black 38	Coloring paper products	Water soluble	Toxic to aquatic animals and plants; carcinogenic; mutagenic, and dermatitis	3, 72 and $78 - 80$
Vat dye	Direct red 28	Vat blue 1, Vat acid blue 74	Insoluble pigment, indigo, and natural fibers, cellulosic fibers	Water	Severely affects the insoluble quality and clearness of water resources such and 82 as lakes and rivers; dermatitis, allergic conjunctivitis, rhinitis, and other allergic	3, 72, 73, 76, 81
Disperse dye	Vat blue 1	Disperse red 9, Disperse red 60	Polyester, nylon, Disperse violet 1, cellulose acetate, and acrylic fibers		reactions Mutagenic; carcinogenic; 3, 72 causes soil and water pollution	and 83

Disperse red 60

Fig. 1 Frequency of publications on dye removal with selected keyword 'Dye Removal' (details are given in Section A of the ESI†).

Accordingly, researchers have focused on the remediation of dye wastewater using coagulation/flocculation, electrocoagulation, filtration, adsorption, ion-exchange, advanced oxidation processes (AOPs), activated sludge processes (ASP), sequencing batch reactors (SBR), membrane bioreactors (MBR), moving bed biofilm reactors (MBBR), and constructed wetlands (CW). $23-30$ The coagulation process involves the destabilization of charged suspended and colloidal impurities.^{31,32} The electrocoagulation method employs a direct current source between metal electrodes containing iron or aluminum submerged in dye-contaminated water. Metal ions create a wide range of coagulated species and metal hydroxides at a certain pH, which destabilize and agglomerate suspended particles or precipitates and adsorb dye molecules.^{23,33} In the filtration techniques, the separation of dissolved and suspended particles is carried out by sieving and particle capturing mechanisms.^{32,34,35} Adsorption methods involve the movement of solids from the bulk liquid to the surface of the adsorbent.^{26,36} The ion-exchange method involves the removal of dyes through the strong interactions between the functional groups on ion exchange resins and charged dye molecules. Review Moreland on Commons Article Commons are a simple of the stress Articles. The common article of the stress Article is license to the common and the stress Article is license to the stress Article is license to the c

Fig. 2 Sources and pathways of dyes in the environment

Materials Advances

(a)

STATE CONSULTERING MEMORIATION MENORITEINTO

STATE REPORT MENORITEINTY CONSULTERING

CONSULTERING MENORITEINTS

CONSULTERING MENORITEINTS

CONSULTERING MENORITEINTS

CONSULTERING MENORITEINTS

CONS

Fig. 3 Pie-chart showing the percentage of literature available on dye removal for (a) various physicochemical and biological techniques. Keywords: dye, water, treatment, and name of each technique, as mentioned in the plot. (b) Adsorption techniques using different adsorbents. Keywords: dye, water, adsorption, and the type of each adsorbent as mentioned in the plot. (Details are given in Section B and C of the ESI,† respectively).

molecules results in the separation of dyes from wastewater.²⁹ The use of AOPs, such as ozonation, ultraviolet/hydrogen peroxide (UV/ H_2O_2), Fenton, ultrasound, anodic oxidation, and photocatalytic processes, have been efficiently employed to treat dye wastewater. AOPs involve the formation of active radicals, which degrade targeted contaminants.^{35,37-43} The suspended and/or attached growth of bacterial systems (i.e., ASP, MBBR, SBR, CW, and MBR) have been employed in the biodegradation of dye molecules.44,45 The number of articles on various existing physicochemical and biological treatment techniques is shown in Fig. 3a, which confirms that among these technologies, adsorption is considered to be one of the most important and useful decontamination processes. It is considered to be a fast, low cost, simple, sludge-free process, having high efficiency and/or selectivity, mechanical stability, and recycling facilities.^{14,46-51} The adsorption process is widely used for the remediation of different pollutants from wastewater, including heavy metals, arsenic, and dyes.52–59 Additionally, a pie chart displaying the percentage of literature available on dye removal using various adsorption techniques is shown in Fig. 3b. Considering this, the present study aims to review dye removal from polluted water via the adsorption process using various types of adsorbents. Specifically, several adsorbents, including activated carbon, metal oxide-based, carbon-based, bio-adsorbent, metal–organic framework (MOF), and polymer-based materials, are widely applied for the adsorption of dye from polluted water.^{13,14,60-67} These adsorbents possess the advantages of easy fabrication, high effective

surface area, multi-functionalities, high surface volume ratio, high reactivity, large number of active sites, reusability, low cost, and high efficiency to treat recalcitrant compounds.^{68,69}

According to the available literature, several techniques such as chemical oxidation, coagulation, filtration with coagulation, precipitation, adsorption, and biological treatments have been frequently used to remove dyes from industrial and domestic effluents. However, the use of each of these methods in separation has merits and disadvantages. For example, coagulation is most commonly used method in industry, which does not involve the formation of harmful and toxic intermediates. However, inherent sludge formation and its disposal remain its biggest drawback. Further, the choice of method is also guided by operational costs. Considering this, the adsorption process is considered to be one of the most effective and inexpensive treatment processes to remove dyes in wastewater. Accordingly, the present article presents a review of the challenges and opportunities of the adsorption methodology available as the current state of the art in the removal of dyes from contaminated water. This covers the classification of dye effluents released from various industries, their solubility in water, chemical structures, and impact of these toxic compounds on the environment and human health, and the types of adsorbents used in the remediation of dyes are reviewed. This is followed by an updated review on the removal of different dyes using a variety of adsorbents. In addition, the adsorptive separation of dyes is also assessed in terms of the critical factors influencing dye separation, maximum adsorption capacity, adsorption mechanisms, and adsorption kinetics. It is anticipated that

the current review will be helpful in identifying cost-effective and efficient adsorption methods for the remediation of industrial dyes in wastewater. Finally, the present review also targets various research gaps and their possible solution.

2. Dyes: sources, classifications, and ecotoxicological effects

A dye is generally described as substances capable of imparting color through physical/chemical binding on a substrate to which it is applied. The presence of chromophores in dye accounts for the development of color, which auxochromes are attached to.⁶⁵ Table 1 describes the classification of dyes based on their physicochemical properties, applications, ecotoxicological effects, and water solubility. These dyes exhibit aromatic molecular structures originating from hydrocarbons, such as benzene, toluene, naphthalene, anthracene, and xylene.⁷⁰ Dyes are mainly derived from two significant sources, including natural and anthropogenic. The natural sources include plants, different insects, animals, and minerals, whereas synthetic dyes are man-made or manufactured using various organic molecules. $3,71$ However, the multifaceted applications of dyes in daily life involve their release together with other toxic organic/inorganic chemicals from industrial effluents, resulting in detrimental effects on the environment.⁷¹ Therefore, it is necessary to protect the environment from these toxic dye/dye effluents released in water by subjecting them to various physical, chemical, biological treatments or their combinations. Fig. 2 shows the sources and pathways of different dyes originating from various sources, such as industry, wastewater treatment plants and households, contributing to environmental pollution. Dyes can be classified considering their chemical structure, physicochemical attributes, origin, and applications.22 This classification also considers the extremely hazardous/toxic industrial effluents that are carcinogenic to human health and the environment.^{1,21} Accordingly, Table 1 describes acid, basic, reactive, nitro, vat, disperse, azo, mordant dyes, etc. Review Materials dotation in lending conserticutive separation, attaction repulsion, for radical restoration, and the common access article is article in the common determinant in solution and the common determinant in sol

3. Existing treatment processes for the remediation of dyes

Previously, conventional treatment processes were employed using proper regulatory guidelines for the treatment of dyes in wastewater.⁹¹ However, advanced dye removal processes have been established considering the discharge limit. They include several biological (e.g., ASP, MBR, SBR, MBBR, and CW), coagulation/flocculation, and advanced physicochemical processes (such as adsorption, filtration, photocatalysis, Fenton reaction, ozonation, UV/H_2O_2 , and anodic oxidation) reported for the purification of dye-contaminated wastewater.^{29,36,92-95} Biological processes use attached and suspended growth systems for the removal of dyes using aerobic and anaerobic or facultative bacteria.96 In the coagulation/flocculation process, various coagulants are employed to destabilize the charged suspended and colloidal impurities.³² The advanced physicochemical processes are based on the principle of the sieving process, solid–liquid

separation, attraction–repulsion, free radical reactions, catalytic oxidation, and electrochemical reactions. Adsorption is another simple facile process extensively used in the treatment of industrial dye effluents. This process involves the movement of dye molecules present in the liquid phase to a solid surface of various adsorbents.^{26,36} Membrane processes such as reverse osmosis (RO), nanofiltration (NF), and microfiltration (MF) have also been successfully employed in the treatment of dye–laden water (more than or about 90% removal efficiency). However, pore blockage and membrane fouling during these processes are still major drawbacks.^{93,97-99} In AOPs, active radicals are generated, mainly hydroxyl radicals, which play an important role in degrading persistent dye compounds. However, the high cost/energy requirements and the formation of toxic by-products are a few major constraints in their practical application.^{35,100}

In addition, biological processes, such as ASP, MBR, SBR, and MBBR, have shown good efficacy for dye removal. However, the good removal efficiency of dyes by biological processes is overshadowed by their limitations such as space requirements, low removal rate, and inefficiency to treat recalcitrant dye components. The number of articles published on various existing physicochemical and biological processes are compared and shown in Fig. 3a, which presents that adsorption is the most studied process for dye removal. Overall, it can be inferred that in comparison to the existing advanced oxidation, filtration, and biological treatment processes, the adsorption process is beneficial for treating dye wastewater owing to its easy operation, low cost, high efficiency, recycling of the adsorbents, suitability for the treatment of persistent dye compounds and applicability.40,101

4. Overview of various adsorbents for the removal of dyes

At present, various adsorbents such as bio-sorbents, carbonbased nano-adsorbents, transition metal-based oxides, MOFs, and polymer-based adsorbents are used to treat dye-containing wastewater. The pie-chart in Fig. 3b displays the percentage of the literature available on dye removal using various adsorbents, where it can be observed that adsorbents such as polymer-based materials and activated carbon are studied more for the removal of dyes.

The possible responsible mechanisms (i.e., surface complexation, electrostatic interaction, and van der Waals force) and processes (i.e., surface diffusion and intraparticle pore diffusion) for the adsorption of dyes are discussed and shown in Tables 2–7. The detection wavelengths for the targeted dyes in the reported studies are also mentioned in Tables 2–7, which may be helpful for readers to measure the concentrations of these dyes. In the following sections, the above-mentioned adsorbents are discussed in detail. The classes of dye molecules, their ecotoxic effects, adsorptive removal of dyes using various classes of adsorbents together with their sub-categories, the critical influencing factors, and responsible adsorption mechanisms are displayed as a flow chart in Fig. 4.

Fig. 4 Flow chart showing the classes of dye molecules, their ecotoxic effects, removal using different classes of adsorbents together with their sub-categories, critical influencing factors, and probable adsorption mechanisms.

4.1. Activated carbon

Activated carbon-based adsorbents are widely studied in the field of adsorption owing to their robust chemical stability, low density, structural diversity, and suitability for field-scale applications. These unique characteristics generally originate from their internal pore morphology, surface characteristics, porosity, pore volume, chemical structure, and presence of functional groups from their source material, including their activation.102–104 The commercial activated carbon and activated carbon synthesized from various waste materials are discussed in the subsequent section.

4.1.1 Commercial activated carbon. Researchers have reported the use of various commercial activated carbons as adsorbents for the separation of different dyes from wastewater.^{62,105,106} For instance, Malik (2004) developed an effective carbon-based adsorbent from mahogany sawdust and directly applied it to adsorb dyes. The experimental data well correlated with the Langmuir model, exhibiting an adsorption capacity of 518 and 327.9 mg g^{-1} for Direct Blue 2B and Direct Green B dyes, respectively.¹⁰⁵ In another study, Mohammadi et al. reported the removal of an anionic dye $(i.e., MO)$ using mesoporous carbon CMK-3 (i.e., carbon material kinetic-3) as an adsorbent and observed the extraction of the dye within 60 min. Further, their studies indicated that acidic media facilitated the removal of the dye more than basic media. An increase in the

initial dye concentration also has a positive effect on the adsorption capacity. The analyzed equilibrium data well fitted the Langmuir isotherm, following monolayer adsorption (adsorption capacity at 25 °C: 294.1 mg $\rm g^{-1})$. $\rm ^{62}$ In another study, Djilani et al. used activated carbon prepared from apricot stones and achieved an adsorption capacity of 36.68 and 32.25 mg g^{-1} for MB and MO at a pH of 4.85 and 4.87, respectively. The corresponding adsorption data was found to be well correlated with the Langmuir isotherm.¹⁰⁶ In another study, Rahman (2021) used activated carbon synthesized from red oak (i.e., Quercus rubra) for the adsorption of MB and observed adsorption efficiency of 97.18%.¹⁰⁷ According to Giannakoudakis et al., the adsorption of Reactive Black 5 dye on the three different forms of commercials activated carbon, namely, Norit Darco 12×20 (DARCO), Norit R008 (R008), and Norit PK 1-3 (PK13) followed the Langmuir, Freundlich, and Langmuir–Freundlich models, achieving an adsorption capacity of 348, 527, and 394 mg g^{-1} in 24 h by the corresponding commercial activated carbon as adsorbents, respectively.¹⁰⁸ Activated carbon was also produced from spent tea leaves (STAC) to remove malachite green (MG), which showed an adsorption capacity of 256.4 mg g^{-1} at 45 °C. These studies showed an increment in the adsorption of MG from aqueous solution up to pH 4 and then became more or less unaltered at higher pH.¹⁰⁹

4.1.2 Activated carbon from waste materials. Different waste materials such as lemongrass leaf, rice husk, orange peel, and spent tea leaves have been reported as important sources for deriving activated carbon, which can be effectively applied as adsorbents in dye remediation.^{110–114} For example, Ahmad et al. utilized lemongrass leaf-based activated carbon to remediate methyl red from contaminated water. Their findings showed an optimum dye adsorption capacity of 76.923 mg g^{-1} at pH 2 within 5 h. An increase in the adsorption rate of methyl red dye was mainly observed with an increase in temperature, dye concentration, and contact time. Their thermodynamic study indicated that the adsorption of methyl red dye is endothermic and follows a

Fig. 5 Morphological image of chemical activated carbon (ACC) prepared from jute sticks [Reprinted with permission from ref. 116. Copyright 2010, Elsevier].

physisorption process.¹¹⁰ In addition, Ding et al. treated rhodamine B using activated carbon obtained from treated rice husk and achieved its equilibrium removal $(478.5 \text{ mg g}^{-1})$ within 5 h. The initial solution pH was found to have an insignificant effect on the adsorption of rhodamine B on the activated carbon. 111 In another work, Lam et al. reported an adsorption capacity of 28.5 mg g^{-1} while investigating the adsorption of MG cationic dye using activated carbon prepared from orange peel. 112

Jawad et al. prepared sulfuric acid-treated activated carbon derived from coconut leaves, exhibiting rough and irregular surfaces along with cavities, which was found to be a very effective adsorbent for MB dye (adsorption capacity: 149.3 mg g^{-1}). It is also found that the adsorption capacity increased with an increase in the initial concentration of MB.¹¹⁵ In another study, chemical activated carbon (ACC) prepared from jute sticks (morphological image is shown in Fig. 5) showed an adsorption capacity of 480 mg g^{-1} for brilliant green dye.¹¹⁶ Guava leaf-based activated carbon exhibited a maximum adsorption capacity of 39.7 mg g^{-1} to remove CR dye.¹¹⁷ Low-cost activated carbon derived from Brazilian agriculture waste was also used for the adsorption of dyes, including Basic Blue 26, Basic Green 1, Basic Yellow 2, and Basic Red 1, which exhibited an adsorption capacity in the range of 10–76 mg g^{-1} , 26–83 mg g^{-1} , 27–83 mg g^{-1} , and 21-70 mg g^{-1} , respectively.¹¹⁸ The adsorption performance of commercial activated carbon and activated carbon derived from various waste materials for the treatment of dye-contaminated water is presented in Table 2. Review Martinsk Articles. Different physion
pairs in and allocal model on the radius and the same pairs are the radius and animals article is equilibrium of the same pairs are the reduced to the model of the basebook comm

Table 2 Activated carbon (AC) as an adsorbent in dye removal

Source of AC	Dyes	Experimental conditions	Adsorption capacity/ removal efficiency	Adsorption kinetics; isotherm; and mechanisms
Commercial activated carbon				
Saw-dust 105	Direct Blue 2B and Direct Green B	Time: 120 min pH: 3	518 and 327.9 mg g^{-1} , respectively	Pseudo-second-order kinetics; Langmuir isotherm model; chemisorption
Apricot stones and commercial activated carbon^{106}	Methylene blue (MB) and methyl orange (MO)	C_0 : 10 mg L ⁻¹	Activated carbon prepared from apricot stones (ASAC): 36.68 and 32.25 mg g^{-1} , respectively.	Pseudo-second-order kinetics; Langmuir isotherm; chemisorption and intraparticle diffusion
		T: 298K	Commercial activated car- bon (CAC): 199.60 mg g^{-1} and 35.43 mg g^{-1} , respectively.	
		Dose: 0.5 g/50 mL pH: 4.85 (MB) and 4.87 (MO) Time: 60-180 min λ_{max} : 665 and 465 nm,		
		respectively		
Mesoporous carbon material ⁶²	MO	Time: 60 min C_0 : 1000 mg L ⁻¹ Dose: 50 mg in 25 mL pH: 3-9	294.1 mg g^{-1}	Pseudo-second-order kinetics; Langmuir isotherm; chemisorption
Red Oak (Quercus $rubra)^{107}$	MB	λ_{max} : 465 nm C_0 : 10 mg L ⁻¹ Dose: 0.25 g/50 mL pH: 10 T: 318 K Agitation speed: 175 rpm Time: 2 h λ_{max} : 660 nm	97.18%	

Table 2 (continued)

4.2. Non-conventional adsorbents

In recent years, several non-conventional adsorbents have been gaining substantial attention as potential economic alternatives of costly adsorbent materials to remove toxic pollutants.120 This includes the utilization of abundantly available agricultural, industrial, natural resources, bio wastes, etc. as waste materials. These waste materials prior to their application as adsorbents are subjected to various processes such as chemical treatment, conversion to powder form, and decomposition.^{60,121-123} Considering this, different waste materials to adsorb toxic dyes from contaminated water are described below.

4.2.1 Agricultural waste materials. Agricultural waste materials, such as raw maize cob, exhausted coffee ground powder, saw-dust, black cumin, neem leaf, pineapple leaf, and pine tree leaves, have been used by many researchers in dye remediation of contaminated water.^{60,121-125} Abubakar and Ibrahim (2019) used raw maize cob for the adsorption of bromophenol blue (96.5%) and bromothymol blue (94.4%) present in wastewater at the equilibrium time of 125 and 110 minutes, respectively. The effect of increasing the initial dye concentration on dye adsorption showed positive effects, and the dye adsorption followed the Temkin isotherm model. 122 In another work, the adsorption of rhodamine B and rhodamine 6G on

exhausted coffee ground powder achieved an adsorption capacity of up to 5.3 and 17.4 µmol g^{-1} , respectively.⁶⁰ It was proposed that electrostatic, hydrophobic, and intermolecular interactions account for the adsorption of Rhodamine dye onto the adsorbent surface (Fig. 6). Sodium hydroxide-treated sawdust exhibited an adsorption

Fig. 6 Possible adsorption mechanisms on the surface of exhausted coffee ground powder [Reprinted with permission from ref. 60. Copyright 2017, Elsevier].

capacity of 55.86 mg g^{-1} for brilliant green dye in 3 h.¹²¹ In a study by Siddiqui et al., an antimicrobial Nigella sativa seed-based manganese dioxide/black cumin (MnO₂/BC) nanocomposite was used for the adsorption of MB (adsorption capacity: 185.19 $\mathrm{mg\,g}^{-1}$ at pH 7.0 and 318 K). The process of adsorption was endothermic and best described by the Langmuir isotherm. The adsorption mechanism involved hydrogen bonding and electrostatic interactions of MB onto the surface of $MnO₂/BC¹²³$ Pineapple leaf powder.¹²⁵ pine tree leaves,¹²⁶ and *Platanus orientalis* leaf powder¹²⁷ as adsorbents achieved the maximum removal capacities of 48.72, 71.94, and 114.94 mg g^{-1} , corresponding to the contact time of 150, 120, and 70 min in the removal of Basic green 4, Basic red 46, and MB dye, respectively. Neem leaf powder was also used for the adsorption of brilliant green dye, 124 which showed 0.554 mmol g^{-1} adsorption capacity within 240 min. Microwave-assisted spent tea leaves exhibited a maximum adsorption capacity of 242.72 mg g^{-1} for Eriochrome black-T adsorption in a contact time of 24 h^{113}

4.2.2 Industrial waste materials. Various industrial wastes, including fly ash, slurry, and ceramic wastes, have been regularly used as adsorbents for dye removal from contaminated water.¹²⁸⁻¹³¹ Jain et al. used steel and fertilizer industrial waste as an adsorbent material for the adsorption of ethyl orange, metanil yellow, and Acid Blue 113 dyes. In this process, they achieved an adsorption capacity of 198, 211, and 219 $\mathrm{mg\,g}^{-1}$, respectively. 128 Coal fly ash exhibited maximum removal efficiencies of more than 90% and up to 85% in 24 h for MB and crystal violet dyes, respectively.¹²⁹ Bhatnagar and Jain (2005) used carbonaceous slurry waste as an adsorbent to remove RhB and Bismark Brown R dye. They achieved an adsorption capacity of 91.1 and 85 $\text{mg}\ \text{g}^{-1}$ at a contact time of nearly 25 min for RhB and Bismarck Brown R dye, respectively.¹³⁰ Ceramic adsorbents derived from industrial waste coal gangue achieved an adsorption capacity of 1.044 and 2.170 $\mathrm{mg\,g}^{-1}$ for Cationic Red X-5GN and Cationic Blue X-GRRL dyes at a contact time of 180 min, respectively.¹³¹ The possible mechanisms displayed in Fig. 7 suggest electrostatic attraction, H-bonding, etc., playing an essential role in the adsorption of

Fig. 7 Possible adsorption mechanisms of adsorption of cationic dyes by gangue ceramics [Reprinted with permission from ref. 131. Copyright 2019, Elsevier].

the X-5GN and X-GRRL dyes. Furthermore, industrial waste shells of eggs showed an adsorption capacity of 94.9 and 49.5 mg g^{-1} in removing MB and CR, respectively.132

4.2.3 Natural and synthetic clay. The easy availability, low cost, high porosity, high potential for ion exchange, and nontoxicity of several natural and synthetic clays have resulted in their significant use as adsorbents for dye removal from aqueous solution.¹³³⁻¹³⁶ For example, sulfuric acid-treated coal bearing kaolinite achieved a maximum adsorption capacity of MB dye corresponding to 101.5 mg g^{-1} .¹³³ In another work, the adsorptive behavior of RhB on sodium montmorillonite clay showed an adsorption capacity of 42.19 mg g^{-1} .¹³⁷ The adsorption process involved electrostatic attraction between the negatively charged adsorbent surfaces and positively charged cationic dye. Santos and Boaventura (2008) used sepiolite to remove Basic Red 46 and Direct Blue 85 dyes, achieving an adsorption capacity of 108 and 454 mg g^{-1} , respectively.¹³⁴ Acid-treated palygorskite was employed to remove crystal violet, cationic light yellow (7GL), MB, and MO dyes, exhibiting adsorption capacities of 223.43, 290.86, 86.53, and 276.11 mg g^{-1} , respectively.¹³⁶ Palygorskite modified by 3-aminopropyl triethoxysilane was successfully employed to remove reactive red 3BS, reactive blue KE-R, and reactive black GR dyes in 20 min with adsorption capacities of 34.23, 38.59, and 60.13 mg g^{-1} , respectively.135 Kismir and Aroguz (2011) reported an adsorption capacity of 1.18 mg g^{-1} for the adsorption of brilliant green dye on Saklikent mud as an adsorbent. 138 Flower-like¹³⁹ and hollow LDH¹⁴⁰ exhibited an adsorption capacity of 500.6 and 210 mg g^{-1} in less than 10 min for methyl orange, respectively. Review Martials Article is the Hilal green dye in 3 h.¹⁴⁴ h.n a stady the X-532. Stadt dyes reuthermore, industrial water also by the baseline is also by the dye of the stadt on a state of a state of a state of a state

4.2.4 Bio-adsorbents. Significant advancement has been made in the field of dye removal from polluted water using biosorbents, such as Spirulina platensis, Penaeus indicus shrimp, cellulose, Ganoderma lucidum, wheat flour, and Graham flour.^{141–146} According to Dotto et al., Acid Blue 9 and FD&C Red No. 40 were effectively adsorbed on the biosorbent synthesized from Spirulina platensis. The scanning electron microscopy (SEM) image of the Spirulina platensis biomass in Fig. 8 shows the presence of pores and cylindrical filaments on its surface, revealing the adsorption capability of Spirulina platensis. The experimental analysis showed a biosorption capacity of 400.3 and 1653.0 mg g^{-1} for FD&C Red No. 40 and Acid Blue 9 dye, respectively, at initial solution pH of 2 and contact time of 100 min.^{141} The shell of Penaeus indicus shrimp was also found to be an effective adsorbent

Fig. 8 Scanning electron microscopy image of Spirulina platensis biomass [Reprinted with permission from ref. 141. Copyright 2012 Elsevier].

Table 3 Non-conventional adsorbents in dye removal

for Acid Blue 25, and dye biosorption fitted well with the pseudo- second-order model. ¹⁴² The optimum condition of this dye adsorp- tion corresponds to pH 2 and 0.1 $g L^{-1}$ dose, resulting in an adsorption capacity of 1093 mg g^{-1} . The adsorption capacities of 2.197, 2.120, 2.038, and 1.480 mg g^{-1} were achieved on neem sawdust for the removal of crystal violet, MB, MG, and RhB dyes, respectively, from contaminated water in 30 min. ¹⁴⁷ The adsorption capacities of 1201 and 1070 mg g^{-1} were observed			within 3 h on cellulose nanocrystal-reinforced keratin for the adsorption of Reactive Black 5 and Direct Red 80, respectively. ¹⁴³ The adsorption process of both the dyes was well correlated with the Langmuir isotherm. Wu et al. used the spent substrate of Ganoderma lucidum for removing MG, safranine T, and MB dyes and observed the adsorption capacities of 40.65, 33, and 22.37 mg g^{-1} , respectively, in 4 h. ¹⁴⁴ The adsorption performances of various non-conventional adsorbents are listed in Table 3.	
Table 3 Non-conventional adsorbents in dye removal				
Examples of adsorbents Dyes		Experimental conditions	Adsorption capacity/ removal efficiency	Adsorption kinetics; isotherm; and mechanisms
Waste materials from agricultural Raw maize cob ¹²²	Bromophenol blue and C_0 : 10-100 mg L ⁻¹ bromothymol blue	Dose: 0.5-4.0 g Time: 125 and 110 min, respectively λ_{max} : 591.22 and 430.9 nm,	96.53%, and 94.39%, respectively	Pseudo-second-order kinetics; Temkin isotherm; chemisorption
Exhausted coffee ground powder ⁶⁰	Rhodamine (Rh) dye (Rh B and Rh 6G)	respectively Dose: 50 mg/50 mL Time: 3 h λ_{max} : 554 and 526 nm, respectively	5.255 and 17.369 µmol g^{-1}	Pseudo-first-order kinetics and pseudo-second-order kinetics; Langmuir isotherm;
NaOH treated saw $dust^{121}$	Brilliant green	Time: 3 h Dose: 4 $g L^{-1}$ C_0 : 100 mg L ⁻¹ T: 303 K	55.86 mg g^{-1}	chemisorption Pseudo-second-order kinetics; Temkin and Redlich-Peterson isotherm; physisorption and boundary layer diffusion
Nigella sativa seed-based nanocomposite- MnO_2/BC^{123}	MB	Dose: 1.0 g \mbox{L}^{-1} C_0 : 10 mg L^{-1} λ_{max} : 660 nm	185.185 mg g^{-1}	Pseudo-second-order kinetics; Freundlich isotherm; intraparticle diffusion, and film diffusion action
Neem leaf powder ¹²⁴	Brilliant green	C_0 : 10-50 mg/dm ³ Time: 4 h T: 300 K	0.149 to 0.554 mmol g^{-1}	First-order kinetics; Langmuir isotherm; external surface and pore diffusion
Pineapple leaf ¹²⁵	Basic green 4 (BG4)	λ_{max} : 624 nm C_0 : 50 mg L ⁻¹ pH: 9.0 Time: 150 min Dose: 5 $\rm g L^{-1}$ T: 298 K λ_{max} : 618 nm	48.72 mg g^{-1}	Pseudo-second-order kinetics; Langmuir isotherm; chemisorption
Pine tree leaves ¹²⁶	Basic Red 46 (BR 46)	C_0 : 20-100 mg L ⁻¹ Dose: $1-6$ g L^{-} T: 298-318 K Time: 0-120 min λ_{max} : 530 nm	71.94 mg g^{-1}	Pseudo-second-order kinetics; Langmuir isotherm; physisorption
Platanusorientalis $leaf^{127}$	MB	C_0 : 20–180 mg L ⁻¹ Dose: $80 \text{ mg}/50 \text{ mL}$ $T: 25-60$ °C Time: 0-70 min λ_{max} : 664 nm	114.94 mg g^{-1}	Pseudo-second-order kinetics; Langmuir isotherm; endothermic adsorption
Microwave-assisted spent black tea leaves ¹¹³	Eriochrome black T (EBT)	C_0 : 10-400 mg L ⁻¹ Dose: 0.25-5.0 g L ⁻¹ T: 298-338 K Time: 24 h λ_{max} : 518 nm	242.72 mg g^{-1}	Pseudo-second-order kinetics; Langmuir isotherm; physico- chemical interaction
Rice $husk^{148}$	MB	C_0 : 100 mg L ⁻¹ Dose: 250 mg L^{-1} pH: 10 T: 298 K λ_{max} : 664 nm	1350 mg g^{-1}	Pseudo-first-order kinetics; Freundlich and Sips isotherm; electrostatic interaction
Waste materials from industry				
Steel and fertilizer industries wastes 128	Ethyl orange, metanil yellow, and Acid Blue 113	Time: 3 h $pH: 7 \pm 0.5$ λ_{max} : 475 nm, 432 nm, and 532 nm, respectively	198 mg g^{-1} , 211 mg g^{-1} , and 219 mg g^{-1} , respectively	Pseudo-first-order kinetics; Langmuir isotherm; physisorption
Coal fly ash^{129}	MB and crystal violet (CV)	Dose: 0.08 g L^{-1} Time: 24 h λ_{max} : 665 nm and 590 nm, respectively	$CV: > 90\% \text{ MB: } < 85\%$	Pseudo-second-order kinetics; Langmuir isotherm; endothermic adsorption for CV and exothermic reaction for MB dye.

Table 3 (continued)

Table 3 (continued)

 C_0 : initial dye concentration; T: temperature; and λ_{max} : maximum wavelength detected for the analysis of dye.

4.3. Hybrid nanomaterials

Nanomaterials have been extensively used for water treatment applications because of their enhanced surface area and high adsorption-to-mass ratio. Accordingly, the combination of two or more nanomaterials, which is referred to as hybrid nanomaterials, exhibits multi-functionalities found to be very effective to remove dyes from contaminated water, as described below.¹⁵⁵

4.3.1 Carbon-based hybrid nanocomposite. Carbon-based hybrid nanocomposites are associated with easy synthesis, costeffectiveness, availability, non-toxicity, high porosity, etc., similar to other carbon-based nanocomposites. Ultrafine nickel/carbon (dose: 2 $g L^{-1}$) on treatment with RhB and MB showed an adsorption capacity of 5.269 and 7.415 mg g^{-1} , respectively.¹⁵⁶ Manippady et al. investigated the adsorption of CR and MB dye

onto iron–carbon hybrid magnetic nanosheets and achieved an adsorption capacity of 531.9 and 185.2 mg g^{-1} , respectively, in 24 min.157 In another study, a porous silicon–carbon–nitrogen (Si–C–N) hybrid was employed to remove methyl blue and acid fuchsin dyes, achieving an adsorption capacity of 1327.7 and 1084.5 mg g^{-1} , respectively.¹⁵⁸ The possible mechanism displayed in Fig. 9 suggests the presence of electrostatic interactions and van der Waals forces between the adsorbent and dye. An Ni/porous carbon nanotube nanocomposite was used to remove MG, CR, RhB, MB, and MO dye, exhibiting adsorption capacities of 898, 818, 395, 312, and 271 mg g^{-1} , respectively.¹⁵⁹

4.3.2 Activated carbon-based hybrid nanocomposites. Activated carbon-based hybrid nanocomposites have been widely used in the purification of contaminated water. Wang et al. observed an adsorption capacity of 416.67 mg g^{-1} (303 K) using

Fig. 9 Adsorption mechanisms for porous Si–C–N hybrid material [Reprinted with permission from ref. 158. Copyright 2015, Nature Research].

activated carbon aerogel immobilized with konjac glucomannan for the removal of MB ¹⁶⁰ In another study, ZnO nanoparticles loaded on Parthenium weed activated carbon achieved more than 99% removal of MB in 60 min.¹⁶¹ The adsorption of RhB and Orange G using sulfonic acid-modified activated carbon resulted in an adsorption capacity of 757.6 and 318.5 mg g^{-1} , respectively.¹⁶² Gong et al. used activated carbon synthesized from finger citron residue as a new type of adsorbent for the removal of harmful dyes, namely, anionic dyes such as MO and cationic dyes such as MB, from contaminated water, achieving an adsorption capacity of 934.58 (MO) and 581.40 mg g^{-1} (MB).¹⁶³

4.3.3 Carbon nanotube-based hybrid nanomaterials. Recently, carbon nanotube (CNT)-based nanohybrid materials have receive tremendous attention because of their high specific surface area, small sizes, and hollow structures.164,165 According to Gong et al., these hybrids are more efficient for the adsorption of organic contaminants compared to even activated carbon.⁷⁰ Thus, the unique features of carbon nanotubes have been supplemented in the formation of several nanocomposites for dye removal from contaminated water. CNTs exhibited an adsorption capacity of 44.64 mg g^{-1} for CI Reactive Red 2 dye.166 Magnetic multi-walled CNT (MMWCNT) exhibited a poor adsorption performance for MB, neutral red, and brilliant cresyl blue dyes.⁷⁰ In another study, Yao et al. achieved a maximum adsorption capacity of 51.74 $\text{mg}\,\text{g}^{-1}$ MO dye on MMWCNT from wastewater.¹⁶⁷ Further, Sui et al. studied the adsorption of MB and MO on a synthesized calcium alginate/MWCNT hybrid and reported the maximum adsorption capacity of 606.1 and 12.5 mg g^{-1} , respectively.¹⁶⁸ HNO₃/NaClO/MWCNT nanohybrid¹⁶⁹ and magnetite/MWCNT¹⁷⁰ hybrid materials showed a maximum adsorption capacity of 55 and 48.06 $\text{mg}\,\text{g}^{-1}$ for the removal of bromothymol blue and MB dyes, respectively.

4.3.4 Graphene and reduced graphene oxide nanocomposites. Graphene oxide (GO) has been used as an adsorbent for dye removal from wastewater, such as Direct Red 81 and Indosol SFGL direct blue,¹⁷¹ crystal violet and methyl orange,¹⁷² and methylene blue.^{173–176} The adsorption mechanism involves strong interactions between graphene oxide (functionalized with hydroxyl and carboxylic groups) and active functional groups present in the dye.^{171,177} In addition, several studies have also been reported on GO and reduced graphene oxide (rGO)-based nanocomposites for the adsorption of dye from contaminated water. Zheng et al. prepared a 3D hierarchical GO–NiFe layered double hydroxide (LDH) sandwich hybrid as an adsorbent for the removal of CR and MO dye. Fig. 10 shows that the GO–NiFe-LDH is comprised of a hierarchically wellordered structure, and both sides of GO is fully protected by ultrathin NiFe-LDH nanosheets, resulting in a sandwich-like architecture. The hybrid exhibited higher adsorption phenomena for CR and MO, as evident from the adsorption capacity values of 489 and 438 mg g^{-1} , respectively. This was ascribed to the presence of electrostatic attraction and ion exchange reactions between the dye molecules and hybrid adsorbents.¹⁷⁸ In another work, graphene/polyaniline (PANI)/Fe₃O₄ was used as a nanoadsorbent for the removal of CR from dye contaminated water.¹⁷⁹ It showed an excellent adsorption performance (adsorption capacity: 248.76 mg g^{-1}) for CR dye. MB dye (initial concentration: 250 mg L^{-1}) on treatment with GO showed an adsorption capacity of about 714 mg g^{-1} .¹⁷⁴ In another work, graphite oxide was used as an adsorbent to separate MB and MG dyes, with maximum adsorption capacities of 351 and 248 mg g^{-1} , respectively.¹⁸⁰ Heidarizad and Şengör (2016) used GO/magnesium oxide nanocomposites for the removal of MB dye and achieved an adsorption capacity of 833 mg g^{-1} in a contact time up to 60 min.¹⁸¹ Investigations have also been reported using a combination of magnetic Fe₃O₄/carboxylate GO¹⁸² and GO/Fe₃O₄¹⁸³ nanostructures as adsorbents in dye removal. It was inferred that $GO/Fe₃O₄$ and $Fe₃O₄/carboxplate GO$ achieved complete removal (MB) and maximum adsorption capacity of 36 mg g^{-1} (MB) and 22.1 mg g^{-1} (RhB), respectively. Peyron 2. This are extended on 02 common access Article is likely and the set of α) and the complete a complete the complete the complete Common and the complete the complete Commons are extended under the complete the

> Further, GO-based nanocomposites have been reported for dye removal such as porous core-shell graphene/ $SiO₂$ nanocomposites for the removal of cationic neutral red dye,¹⁸⁴ whereas GO-shielded Mg-Al-LDH,¹⁸⁵ Au nanorod-doped Cu₂O core-shell nanocube-embedded rGO composite,¹⁸⁶ and GO-fabricated Fe-Al

Fig. 10 FE-SEM image of GO–NiFe LDH [Reprinted with permission from ref. 178. Copyright 2019, Elsevier].

bimetal oxide composite¹⁸⁷ were reported for the for removal of MB. Several other GO-based nanocomposites have also been reported to adsorb various classes of dyes, for example, the removal of MB using impregnated graphene in porous wood filters,¹⁸⁸ Fe₃O₄/GO composite,¹⁸⁹ Fe₃O₄ nanoparticlefunctionalized $GO/g-C_3N_4$ nanocomposite,¹⁹⁰ and metal ferriteenabled GO¹⁹¹ and PANI–GO–Fe₃O₄ hybrid nanocomposite¹⁹² for the removal of CR and MO.

4.3.5 Hybrids of natural and synthetic clay. Hybrids adsorbents comprised of natural and synthetic clay-based materials possess several advantages, such as low cost, nontoxicity, thermal resistance, porosity, ion exchange ability, and the possibility of modification with various functionalities.¹⁹³ Consequently, nanohybrids of natural and synthetic clay have been harnessed as adsorbents to remove dyes from wastewater. According to Marrakchi et al., the maximum adsorption capacity of 40.97 and 190.97 $mg g^{-1}$ was achieved in 30 h on cross-linked chitosan/sepiolite clay for MB and reactive orange, respectively.¹⁹⁴ The removal efficiency of MO dye on an Mg–Allayered double hydroxide supported MOF exceeded 99% at the onset of 20 min.¹⁹⁵ The adsorptive removal of reactive red, CR, and Acid Red 1on an Mg–Al-layered double hydroxide fitted well with the Langmuir model.¹⁹⁶ The layered double hydroxide nanohybrid (Mg-Al-NO₃) exhibited a maximum adsorption capacity of 0.8, 1.089, and 1.418 mmol g^{-1} for the adsorption of amaranth, diamine green B, and brilliant green dyes, respectively.¹⁹⁷ Materials Advances

binnels one-was cheme access are free the composite. Published on 16 2021. The second interaction of the common access Article. Specific is a monocomposite. The second interaction of the second of the

4.3.6 Hybrids of fly ash. Fly ash is generally considered a by-product from coal-based industries and is often used either alone or in combination with other materials as a hybrid adsorbent in water purification.^{198,199} This is mainly attributed to its high porosity, economic viability, and easy availability.²⁰⁰

The adsorption study on MB dye using fly ash geopolymer monoliths attained a maximum adsorption capacity of 15.4 mg g^{-1} in 30 h and the absorbent could be reused for up to five cycles.¹⁹⁹ Novais *et al.* reported the adsorption of MB dye on porous biomass fly ash-based geopolymer spheres. The findings showed an adsorption capacity of 79.7 mg g^{-1} in 30 h and reusability for up to eight cycles.¹⁹⁸ Further, Duta and Visa (2015) conducted a study on the adsorption of a mixture of bemacid red and bemacid blue dye on fly ash- $TiO₂$ and noted the adsorption capacity of 4.0 and 1.2 $\text{mg}\,\text{g}^{-1}$, respectively. 201 In another study, a maximum adsorption capacity of 24.8 mg g^{-1} was reported for the adsorption of Orange II dye on $Ca(OH)_{2}/$ $Na₂FeO₄$ modified fly ash.²⁰²

4.3.7 Hybrids of bio-adsorbents. Bio-adsorbents can be easily modified and blended with other components, making them suitable as adsorbents for the removal of dyes from contaminated water. Cross-linked beads of an activated oil palm ash zeolite/chitosan composite showed an adsorption capacity of 199.2 and 270.27 mg g^{-1} for MB and acid blue dye, respectively.²⁰³ Liu et al. reported that cellulose-g-poly(acrylic acid-co-acrylamide) exhibited an adsorption capacity of 1602 and 1814 $\text{mg}\,\text{g}^{-1}$ for of Acid Blue 93 and MB dye, respectively. 204 A sulphonated bio-adsorbent from waste hawthorn kernel as adsorbent attained a maximum adsorption capacity of 151.5 mg g^{-1} for MB dye with a contact time of up to 6 h.²⁰⁵ In another work, an adsorption study was conducted for the removal of MB dye on agricultural waste/ $GO.^{206}$ This study revealed a maximum adsorption capacity of 414.03 mg g^{-1} $(pH = 12)$ with the successful reuse of the adsorbent for up to five cycles. Further, the dye adsorption was well correlated with the Temkin isotherm. The performance of various hybrid materials as adsorbents for the treatment of dyes is presented in Table 4.

Table 4 Hybrid nanomaterial as adsorbents for dye removal

Adsorbent	Dyes	Experimental conditions	Adsorption capacity/ removal efficiency	Adsorption kinetics, isotherm, and mechanisms
Carbon-based hybrid nanocomposite				
Ultrafine $Ni/C156$	RhB and MB	Dose: 2 $g L^{-1}$ C_0 : 5 mg L ⁻¹ Time: 2 h λ_{max} : 554 and 664 nm,	5.269 and 7.415 mg g^{-1} , respectively	Pseudo-second-order kinetics; Freundlich isotherm; chemisorption process
		respectively		
Iron-carbon hybrid magnetic nanosheets ¹⁵⁷	CR and MB	Time: 24 min pH: 2 and 8, respectively Dose: $6 \text{ mg}/15 \text{ mL}$ λ_{max} : 662 and 664 nm, respectively.	531.9 and 185.2 mg g^{-1} , respectively	Pseudo-second-order kinetics; Langmuir isotherm; chemisorption
Hierarchically porous silicon-carbon-nitrogen hybrid materials ¹⁵⁸	Methyl blue and acid fuchsin	C_0 : 300 mg L ⁻¹ and 200 mg L^{-1} , respectively	1327.7 mg g^{-1} and 1084.5 mg g^{-1} respectively	Pseudo-second-order kinetics; Langmuir isotherm; Chemisorption
Ni/porous carbon-CNT 159	MG, CR, RhB, MB, and MO	C_0 : 20 mg L ⁻¹ Time: 60 min	898 mg g^{-1} , 818 mg g^{-1} , 395 mg g^{-1} , 312 mg g^{-1} , and 271 mg g^{-1} , respectively	Pseudo-second-order kinetics; Langmuir isotherm; multilayer adsorption mechanism
Activated carbon-based hybrid nanocomposites				
Konjac glucomannan/ activated carbon aerogel ¹⁶⁰	MВ	C_0 : 140 mg L ⁻¹ Dose: 10 mg/20 mL T: 313 K	416.67 mg g^{-1}	Pseudo-second-order kinetics; Langmuir isotherm; density gra- dient force and hydrogen bond interaction

Table 4 (continued)

Table 4 (continued)

 C_0 : initial dye concentration; T: temperature; and λ_{\max} : maximum wavelength detected for the analysis of dye.

ટ

4.4. Metal oxide-based (magnetic and non-magnetic) hybrid materials

In recent years, metal oxide-based nano-adsorbents have been widely applied in wastewater treatment due to their unique attributes such as large surface area, nano-size, high reactivity, high ability to blend, and robust solution mobility.^{1,208} Considering this, the performance of various metal oxide-based hybrid materials as adsorbents in dye removal is reviewed below.

4.4.1 Magnetic metal oxide nanocomposites. Magnetic nanomaterials exhibit additional advantages in the separation of the catalyst/adsorbent by applying an external magnetic field.²⁰⁹ Gao *et al.* used Fe₃O₄/CeO₂ as a magnetic composite for the removal of Acid Black 210. The maximum adsorption capacity (93.1 mg g^{-1}) achieved was six times higher than of the commercial $CeO₂$. The corresponding experimental data fitted well with the Langmuir isotherm.²¹⁰ Fe₃O₄ magnetic nanoparticles, due to their large surface-to-volume ratio and pore size, showed an adsorption capacity of 150–600 mg g^{-1} of Rhodamine 6G in 30 min.²¹¹ At room temperature, the adsorption of MO, Reactive Brilliant Red K-2BP, and Acid Red 18 in contaminated water on an amine/Fe₃O₄functionalized biopolymer magnetic resin correlated well with the Langmuir adsorption isotherm.²¹² The corresponding adsorption capacity values were found to be 222.2, 101.0, and 99.4 mg g^{-1} , respectively. This high adsorption capacity was attributed to the presence of amine groups and the enhanced surface area of amine/ Fe3O4-resin. In another study, Mg-ferrite magnetic nanoparticles exhibited relatively low adsorption capacity in the removal of methyl green (1.23 mg g⁻¹) and basic fuchsin (2.55 mg g⁻¹).²¹³ NaOHtreated wheat straw impregnated with $Fe₃O₄$ nanoparticles achieved a maximum adsorption capacity of 1374.6 $\text{mg}\,\text{g}^{-1}$ in the removal of Review Marchard (magnetic and non-magnetic) hybrid M2 from contaminant once;²⁴³ The also product members are comparisoned in each of the members on prior and members are detections are detections are detections are dete

Fig. 11 Morphology of a metal oxide-based adsorbent, ZnV_2O_4 hollow spheres [Reprinted with permission from ref. 223. Copyright 2011, Elsevier].

MB from contaminated water.²¹⁴ The adsorption process (endothermic) was likely to be dependent on pH and temperature. The adsorption mechanisms were proposed considering the formation of a surface complex and ion exchange between the MB molecules and adsorbent. Further, a γ -Fe₂O₃ nanoadsorbent exhibited equilibrium adsorption of Acid Red 27 dye within 4 min at a low pH ($<$ 5.5), and a decrease in the dye removal efficiency was observed with an increase in temperature.215 The adsorption of Acid Red 27 dye on γ -Fe₂O₃ followed both the Langmuir and Freundlich isotherms.

Mahapatra et al. reported a maximum adsorption capacity of 416.66 mg g^{-1} at pH 7 for the adsorptive decolorization of CR dye on an $Fe₂O₃$ –Al₂O₃ nanohybrid. This higher adsorption capacity was primarily due to the interaction of the amine functional group of the CR dye molecules with the oxy-hydroxide group of the nanohybrid material.216 An Fe–Mn–Zr metal oxide nanocomposite showed a maximum adsorption capacity of 196.07 and 175.43 mg g^{-1} for the adsorption of MO and eosin yellow dyes, respectively.²¹⁷ The saturation magnetization of the adsorbent was found to be enough for its rapid magnetic separation from water. Further, the maximum adsorption capacity of 714.29 mg g^{-1} with a contact time of 3 h was achieved by a core@double-shell-structured HNTs/Fe₃O₄/poly(DA + KH550) adsorbent in the removal of MB dye. 218

4.4.2 Nonmagnetic metal-oxide nanocomposites. Various nonmagnetic oxide hybrid nanomaterials have been applied as adsorbents in the removal of dyes from the contaminated water. According to Li et al., the adsorption capacity of MO on nanodimensional Co/Cr-codoped ZnO was 1057.9 mg g^{-1} due to its high specific surface area and positive charge on its surface.²¹⁹ Lei et al. noted a maximum adsorption capacity of 397 mg $\rm g^{-1}$ on ZnO–Al $\rm _2O_3$ for the removal of CR dye in 12 h. This adsorbent consisted of microspheres a diameter in the range of $12-16 \mu m$, which were assembled by nanosheets with a thickness of nearly 60 nm.²²⁰ The maximum adsorption capacity of 367 mg g^{-1} for methyl blue dye on Ni–MgO hybrid is attributed to the hydrogen bonding between the N-atoms (which have high electron affinity and smaller atom radius) of methyl blue and OH group on the surface of MgO.²²¹ According to Lei et al., a maximum adsorption capacity of 357 mg g^{-1} was achieved in 12 h for CR dye on NiO–Al₂O₃. This was ascribed mainly to the synergistic effect, high specific surface area, and positive surface charge (at pH 7) of the adsorbent.²²² $\rm ZnV_2O_4$ hollow spheres comprised of a flower-like structure and a large number of compacted nanosheets, as depicted in the SEM image (Fig. 11), exhibited an adsorption capacity of 153.14 mg g^{-1} in 40 min for MB.²²³ Table 5 presents the performance of metal and metal oxide-based hybrid

Table 5 Metal oxide-based hybrid (magnetic and non-magnetic) nanocomposite materials for dye removal

Materials Advances **Review** Review **Review** Review **Review** Review **Review** Review **Review**

Table 5 (continued)

Table 5 (continued)

Table 5 (continued)

(magnetic and non-magnetic) nanocomposites as adsorbents used in dye removal.

4.5. Metal–organic frameworks

Metal–organic frameworks (MOFs) have attracted much attention as adsorbents due to their fine tuneable pore structures and controllable structures/confined geometries. Besides, the large surface areas, multi-functionality, polar/polarisable bonds, and the possibility of the presence of host–guest interactions through the chemical modification of the organic ligands and/or the inorganic sub-units are also likely to play a unique role.²⁵⁰⁻²⁵⁵ According to Li et al., MIL-53(Al)-NH₂ could rapidly bind with MB $(208.3 \text{ mg g}^{-1})$ and MG $(164.9 \text{ mg g}^{-1})$ due to the hydrogen bonding between the amino groups of the dyes and MOF. Further, MIL-Ti MOFs aided the ultrasound adsorption Basic Red 46, Basic blue 41, and MB from single and binary systems, exhibiting the maximum adsorption capacity of 1250, 1428, and 833 mg g^{-1} , respectively.²⁵⁷ This high adsorption capacity of

MIL-Ti MOFs was attributed to π - π interaction, H-bonding, and electrostatic interaction between the dye molecules and MOFs (Fig. 12). Further, the SEM image of the synthesized NH_2-MIL -125(Ti) having circular plates exhibited the transformation of its morphology due to the effect of the reactant concentration (Fig. 13), which also confirmed the excellent distribution of the nanomaterials. Haque et al. developed highly porous MIL-101 MOFs to study the adsorption of MO. The high adsorption capacity of 194 mgg^{-1} depicted the significance of pore size and porosity in the adsorption of MO, following the mechanism of electrostatic interaction on MIL-101. 258

Further, MIL-100(Fe) and MIL-100(Cr)-derived MOFs were also found to be efficient adsorbents in capturing MO and MB dye molecules from aqueous solution. MIL-100(Fe) showed an adsorption capacity of 1045.2 and 736.2 mg g^{-1} , while that of MIL-100(Cr) was 211.8 and 645.3 mg g^{-1} for MO and MB, respectively.²⁵⁹ Further, magnetic MOFs have also been used for the adsorption of MB from dye-contaminated water.

Fig. 12 Multiple dye adsorption mechanisms on MOFs [Reprinted with permission from ref. 257. Copyright 2018, Elsevier].

Fig. 13 Morphology of NH_2 -MIL-125(Ti) with circular plate [Reprinted with permission from ref. 257. Copyright 2018, Elsevier].

Table 6 Metal–organic frameworks (MOFs) for dye removal

The adsorption mechanism involves hydrophobic interactions and/or π – π interactions between the MB molecules and MOF. It was also noted that the adsorption capacity of a magnetic MOF increased from 84 to 245 mg g^{-1} on increasing the concentration of MB from 30 to 300 mg L^{-1} , respectively.²⁶⁰ In addition, the adsorption capacity of the zeolitic imidazolate framework comprising ZIF-8, ZIF-8@CNT, and ZIF-8@GO depicted stable and high reusability for over four cycles for the adsorption of MG, corresponding to an adsorption capacity of 1667, 2034, and 3300 mg g^{-1} , respectively.²⁶¹ Zhao et al. used a zirconium-based metal–organic framework (Zr-MOF) as an adsorbent for the removal of crystal violet and RhB dyes with the maximum adsorption capacity corresponding to 63.38 and 67.73 mg g^{-1} , respectively.²⁶² Table 6 describes various MOFs used as adsorbents in dye remediation from wastewater.

4.6. Polymers and their nanocomposites

Polymer-based adsorbents, such as polyaniline (PANI), polypyrrole (PPY), PANI/PPY copolymer, PANI/GO, PANI-modified rice husk composites, polymeric rice and Graham flour, polymeric turmeric powder, and chitosan, have found enormous applications in the field of dye treatment due to their easy fabrication, high effective surface area, high selectivity, interesting doping/de-doping chemistry, electrical transport characteristics, strong binding affinities, and porous surface texture.^{263–266} For most of the conducting polymer composites, the adsorption of dyes follows the mechanism of physisorption, hydrogen bonding, $\pi-\pi$ interactions, and electrostatic interaction.²⁶⁷ Further, the presence of active groups (i.e., amine and imine) in the polymer facilitates the adsorption process. Many researchers have proposed the applications of polymer-based adsorbents to remediate dyes originating from industrial effluent (Table 7).

Table 6 (continued)

Table 7 Polymers and their nanocomposites for dye removal

Table 7 (continued)

 C_0 : initial dye concentration; T: temperature; and λ_{max} : maximum wavelength detected for the analysis of dye.

4.6.1 Pure polyaniline and polypyrrole. Polyaniline is one of the most studied conducting polymers due to its many advantages, such as simple synthesis, presence of –NH– groups, capability of doping, excellent physicochemical properties, mechanical flexibility, stability, low cost, and easy availability of its monomer.101,268 Alternatively, polypyrrole is another polymer studied for the removal of dyes from wastewater.⁶¹ Accordingly, Tanzifi et al. studied the adsorption of methyl orange on nano polyaniline at 298 and 338 K. They inferred that an increase in temperature enhanced the adsorption capacity for the dye from 3.34 to 32.04 ${\rm mg\ g}^{-1}$ and 3.28 to 30.28 ${\rm mg\ g}^{-1}$ corresponding to the initial dye concentration of 10 and 100 mg L^{-1} , respectively. The kinetics and isothermal studies established the pseudo-second-order model and validity of the Langmuir model (maximum monolayer adsorption capacity: 75.9 mg g^{-1}).²⁶⁹ PANI nanoparticles have also been utilized for the ultrasonication-assisted adsorption of crystal violet dye. 270 The adsorption data fitted well with the Freundlich and Dubinin-Radushkevich isotherms. According to Sharma et al., hyper crosslinked polyaniline (specific surface area: 1083 m² g^{-1}) achieved the maximum adsorption capacity of 245 and 220 mg g^{-1} in 60 min for cationic crystal violet and anionic MO dyes in aqueous medium, respectively. These studies also predicted the fitting of the Langmuir adsorption isotherm for both dyes.²⁷¹ In another study, the adsorption of CR on PANI

and PPY exhibited a maximum adsorption capacity of 250.01 and 66.66 mg g^{-1} , respectively.⁶¹ Further, the experimental results revealed an increase in the adsorption efficiency with reaction time and adsorbent dosage. The kinetic data fitted well with the pseudo-second-order model, while thew equilibrium adsorption findings best correlated with the Langmuir isotherm model. In another study, the adsorption of sunset yellow and CR on a PPY–MWCNT composite achieved an adsorption capacity of 212.1 and 147 mg g^{-1} , respectively.²⁷² The adsorption mechanism involved electrostatic attraction and $\pi-\pi$ electron donor-acceptor interaction. According to Ayad and Zaghlol (2012), cross-linked PANI exhibited an adsorption capacity of 13.85 mg g^{-1} for cationic dyes such as MB (surface area: 349 m^2 g^{-1}). The SEM image of crosslinked polyaniline at high magnification revealed a spongelike structure, indicating the presence of pores (Fig. 14).²⁷³ Smita et al. used PANI to achieve a removal efficiency of 92% in 5 h for a toxic textile dye (MO) present in wastewater. The mechanistic study revealed that the electrostatic interaction between the counterions of the dye molecules and adsorbent was responsible for the adsorption of the dye. 274 The adsorption of MB and acid green dye on PANI hollow nanotubes (internal diameter: 50–60 nm and outer diameter: 5–10 nm) followed the Langmuir model, and their maximum adsorption capacity corresponded to 69.4 and 57.87 mg g^{-1} , respectively.²⁷⁵ Fig. 15 schematically

Fig. 14 Scanning electron microscopy image of crosslinked PANI [Reprinted with permission from ref. 273. Copyright 2012, Elsevier].

Fig. 15 Schematic illustration of PANI-HNTs at pH 3 and 9 (blue color: PANI-HNTs and green color: AG) [Reprinted with permission from ref. 275. Copyright 2018, The Royal Society of Chemistry].

represents the proposed chemical interaction between PANI hollow nanotubes with MB and acid green dyes at pH of 9 and 3, respectively. MB completely adsorbed on the nanotubes of PANI within 20 min, and the adsorption process well fitted the Langmuir isotherm (maximum adsorption capacity: 9.21 mg g^{-1}).²⁷⁶ Bhaumik *et al.* reported that the maximum monolayer adsorption capacity of Reactive Black 5 in aqueous solutions (pH 6) was 434.7 mg g^{-1} (318 K) on polyaniline nanofibers (diameter: 50–80 nm). The equilibrium isotherm data fitted the Langmuir isotherm.²⁷⁷

4.6.2 Polyaniline and polypyrrole-based nanocomposites. Recently, polymeric nanohybrid materials have attracted significant attention in the field of wastewater treatment due to their high adsorption ability. For example, starch/polyaniline was used to treat reactive black and Reactive Violet 4 dyes, showing an adsorption capacity of 811.30 and 578.39 mg g^{-1} , respectively.²⁷⁸ The Toth isotherm model better described the single-component equilibrium adsorption, whereas the modified Freundlich model well fitted dye removal. In one study, PANI/starch was used to adsorb MB dye, which shown an adsorption capacity of 6.8 \times 10^6 mol g^{-1} .²⁷⁹ Further, El-Sharkaway *et al.* studied the removal of MB using PANI/GO and PANI/rGO nanocomposites. The adsorption capacity of PANI/GO and PANI/rGO for MB dye was 14.2 and 19.2 mg g^{-1} , respectively, in 270 min.²⁸⁰ Besides, Shabandokht et al. investigated the adsorption of Acid Red 18 dye using a PANI/HCl-modified rice husk composite, which showed an

adsorption capacity of 100 mg g^{-1} .²⁸¹ This study suggested that the Langmuir adsorption isotherm and pseudo-second-order kinetic model were compatible with the experimental results. In another work, Muhammad et al. removed Acid Blue 40 dye using polyaniline, $Fe₃O₄$, and their composites and the corresponding adsorption capacity was found to be 130.5, 264.9, and 216.9 mg g^{-1} , respectively. The experimental result was better described by the Freundlich isotherm model and the mechanism involved electrostatic interactions and the significant amount of H-bonds present in PANI.²⁶³

In another study, the adsorption of RB5 dye-cellulose coated with magnetite nanoparticles and conducting PPY followed at pH 3 fitted the Langmuir model well (maximum adsorption capacity: 62.31 mg g^{-1}).²⁸² Further, Wang *et al.* also used PANI/ $TiO₂$ to remove MB dye with a maximum adsorption capacity of 458.10 mg g^{-1} , and the Langmuir adsorption isotherm well correlated with the experimental results. Chemical adsorption, membrane diffusion, and intraparticle diffusion were the responsible adsorption processes, while H-bonding, electrostatic interaction, and coordination interaction were the responsible adsorption mechanisms (Fig. 16). The attachment of MB on the surface of PANI mainly occurs on amino groups by electrostatic interaction and hydrogen bonding.283 Thus, a PANI zirconium oxide nanocomposite,²⁸⁴ PANI nanocomposite functionalized with zirconium(w) and silicophosphate²⁸⁵ and PANI α -zirconium phosphate²⁸⁶ acted as efficient adsorbents for the removal of methylene blue and methyl orange dyes. The adsorption process for the cationic methylene blue dye²⁸⁷ and Acid Green 25^{288} on PANI nanotube/silica was best described by the pseudo-secondorder kinetic model and Langmuir adsorption isotherm with the maximum monolayer adsorption capacity of 10.31 and 6.896 mg g^{-1} , respectively. Studies have also been reported Materials Advances

Materials Article on Open Access Article is an amount of the common of the creative Commons Article is a common of the common of the common of th

Fig. 16 Schematic showing the adsorption mechanisms of PANI/TiO₂ [Reprinted with permission from ref. 283. Copyright 2019, Elsevier].

using PANI/silver,²⁸⁹ PANI/alumina,²⁹⁰ PANI/nickel ferrite,²⁹¹ and PANI/zinc ferrite²⁹² composites for the adsorption of brilliant green dye, anionic dyes (reactive red, Acid Blue 62, and Direct Blue 199), MB, and RhB, respectively.

4.6.3 Chitosan-based adsorbents. Chitosan is considered one of the most economical bio-polymers for dye removal, which can be extracted from natural resources. In comparison to other commercial adsorbents, it has attained great interest due to its unique properties such as cationic charge, high adsorption capacity, macromolecular structure, abundance, and cost-effectiveness.293,294 Chitosan is also an attractive source of natural polymers for the adsorption of pollutants from wastewater due to its biocompatibility, biodegradability, antibacterial properties, and nontoxicity. 101 However, owing to its poor mechanical properties, low surface area, pH sensitivity, and low porosity, it is generally used in the form of a composite. Considering this, Janaki et al. reported that a PANI/chitosan composite efficiently removed Congo red, Coomassie brilliant blue, and Remazol brilliant blue R sulfonated anionic dye with a removal efficiency of 95.4%, 98.2%, and 99.8%, respectively. In contrast, it showed a removal efficiency of only 10.6% for the nonsulfonated cationic dye methylene blue.²⁹⁵

The adsorptive removal of Reactive Orange 16 on chitosan/ PANI/ZnO agreed well with the Langmuir isotherm and corresponded to a maximum monolayer adsorption capacity of 476.2 mg g $^{-1}$.²⁹⁶ In another work, the removal of anionic dyes, namely Direct Blue 86, photosens, theraphthal, and C.I. Reactive Blue 21m was studied on chitosan supported on a fibrous carrier.²⁹⁷ The experimental data fitted the Langmuir isotherm and showed the maximum adsorption capacity of anionic dye in the range of 300-1050 mg g^{-1} depending on the type, molecular size, and number of anionic groups in the dye. According to Cojocaru et al., spinel ferrite (15%) dispersed in

the matrix of chitosan inter-linked with glutaraldehyde, showing an adsorption capacity of 45.02 mgg^{-1} for Acid Orange 7 dye. The hydrogen bonding and hydrophobic interaction between the dye molecules and composite were responsible for the adsorption mechanism.⁶⁴ An Fe₂O₃/chitosan-bamboo saw-dust composite efficiently removed the acid dye bromothymol blue.²⁹⁸ The experimental data well correlated with the Langmuir isotherm model with an adsorption capacity of 217.39 mg g^{-1} achieved in 30 min contact time using 0.5 $g L^{-1}$ adsorbent dose. Copello et al. treated Remazol black B, Erythrosine B, neutral red, and gentian violet dyes with chitosan hydrogel/ $SiO₂$ and achieved the maximum adsorption capacity of 0.081, 0.08, 0.88, and 0.17 mmol g^{-1} , respectively.²⁹⁹

4.6.4 Miscellaneous polymer-based adsorbents. Agarwal et al. used polyvinyl alcohol (PVA) as an adsorbent for the removal of bromothymol and MB from wastewater. The corresponding adsorption isotherms were well fitted with both the Langmuir and Freundlich models. The adsorbent attained the maximum adsorption capacity in 10 min, corresponding to 276.2 and 123.3 mg g^{-1} , respectively.³⁰⁰ For the adsorption of Coomassie brilliant blue R 250 dye on poly(para-, ortho- and meta-phenylenediamine (PPDA)) grafted electrospun carbon nanofibers, the effective adsorption capacity of 141 mg g^{-1} was achieved and the adsorption kinetics and isotherm data were well correlated with the Elovich kinetic and Redlich–Peterson isotherm models respectively.⁶³ The adsorption mechanism study suggested electrostatic interaction, $\pi-\pi$ interactions, and intermolecular H-bonding controlled the dye sorption. Table 7 shows the removal of dye from contaminated water using conducting polymer, copolymer, and their nanocompositebased adsorbents. Fig. 17 shows a schematic representation of dye pollution in water and its adsorptive removal using different adsorbents. Review Martial express
 μ Martial Advantes Article. Computer Computer Col. Add Bits etc. By consider a creative of article in the computer of article in the strength on 07 6 2021. The strength of article in the strengt

Fig. 17 Schematic presentation of water pollution from dye wastewater, their adsorptive removal using various adsorbents, and the production of treated water.

5. Critical factors influencing dye adsorption

Critical factors such as initial dye concentration, solution pH, temperature, adsorbent dose, and time play a significant role in the adsorptive removal of dyes (Table 8). In this regard, the initial dye concentration makes substantial contributions to the adsorption phenomena. It should be noted that an increase in dye concentration shows positive effects up to a certain limit. Further, the increasing tendency of adsorption for high levels of dye contaminants is directly related to the available active sites on the surface of the adsorbent. The enhanced adsorption capacity is initially accelerated due to the presence of unsaturated active sites in the adsorbent. As the surface of the adsorbent becomes saturated, a considerable reduction in the adsorption of dye occurs.14,302 According to Mane and Babu (2011), for brilliant green dye with an initial concentration of 100 mg L^{-1} , sodium hydroxide treated saw-dust exhibited an adsorption capacity of 55.86 mg g^{-1} .¹²¹ In another work, the adsorption capacities of 1602 and 1814 mg g^{-1} were recorded on cellulose-g-poly(acrylic acid-co-acrylamide) as an adsorbent for the initial concentration of acid blue and MB of 200 mg L^{-1} , respectively.²⁰⁴ These observations suggest, in general, a high initial concentration results in a high adsorption capacity. In addition, the solution pH also plays an essential role in the adsorption of dye from contaminated water. According to Zhou et al., a variation in pH Materials Advances

S. Critical factors influencing dye

access article is state charge or the attorney in lemanda the state charge in the state charge in the state charge of controlled charge in the state charge of contr

can affect the possible reactions between dye molecules and adsorbents due to the change in the ionization level and surface charge of the adsorbent.¹⁴ In general, low and high solution pH favor the adsorption of anionic and cationic dyes, respectively.³⁰³ This was substantiated by Daneshvar et al. and Phoemphoonthanyakit et al., where they reported an adsorption capacity of 1093 mg g^{-1} at pH 2 for Acid Blue 25 and 600 mg g^{-1} at pH 7 for Rhodamine 6G.^{142,211} Further, the temperature has a prominent effect on the adsorption of dyes. Additionally, a variation in temperature is also helpful in identifying if adsorption process is endothermic or exothermic. In an exothermic process, the adsorption capacity decreases an increase in temperature, whereas it increases with an increase in temperature in an endothermic process.³⁰⁴

In general, an increase in the adsorbent dose has positive effects on the adsorptive removal of dyes, mainly due to the increment in the active sorption sites. 303 In contrast, a higher dose may cause congestion in active sites of the adsorbent. Khan and Nazir (2015) achieved an adsorption capacity of 217.39 mg g^{-1} for bromothymol blue at a dose of 0.5 g L⁻¹ using an Fe₂O₃/chitosan–bamboo saw-dust composite.²⁹⁸ In contrast, Ebrahimian Pirbazari et al. reported an adsorption capacity of 1374.6 mg g^{-1} for MB at a dose of 1.0 g L⁻¹ NaOHtreated wheat straw impregnated with $Fe₃O₄$ nanoparticles.²¹⁴ These findings clearly demonstrate the positive effects manifested by an increased adsorbent dosage. Finally, an increase in

Table 8 Critical influencing factors affecting the adsorption process

Critical influencing factor	Salient features	Influence on adsorption	Remarks	Ref.
Initial dye concentration	Showing the dissolved amount of dye in aqueous solution and the amount of dye adsorption are directly related to the active sites present on the surface of the adsorbent.	Increased dye concentration causes an increment in adsorption capacity until the unsaturated active sites of the adsorbent become saturated.	In an aqueous environment, the initial concentration of dye may vary from trace level to mg L^{-1} or even more.	14 and 302
pH of the solution	Has a prominent role in dye adsorption.	A variation in pH affects the reaction between dye molecules and adsorbents because of the change in the ionization level and surface charge of the adsorbents.	The pH of the dye effluent may vary depending on the presence of different types of salts (acidic and basic).	14 and 303
	Controls the degree of electrostatic charges provided by ionized dye molecules and causes the varying rate of adsorptions with changing pH.	In the literature, it has been found that low and high pH favor the adsorption of anionic and cationic dyes, respectively.		
Adsorbent dose	Showing the amount of adsorbent used to remove dye particles. Directly related to the number of active	Generally, an increment in dose provides more active sites, which causes an increase in adsorption capacity.	High dose affects the economy of the treatment process.	95 and 303
	sites available on the surface of the adsorbent.	However, a high dose causes congestion in active sites.		
Temperature	Shows the adsorption nature, whether it is endothermic or exothermic.	An increase in adsorption capacity with an increase in temperature shows the endothermic nature, whereas a decrease in adsorption capacity an increase in temperature shows the exothermic nature of reactions.	In general, an increase in temperature increases the adsorption capacity, but a higher temperature is not desirable.	95 and 304
Reaction time	Shows the contact time between adsorbent and adsorbate.	An increase in contact time causes positive effects on the adsorption until equilibrium among active sites of adsorbent and dye molecules is established.	High reaction time affects the economy of the treatment processes due to an increase in energy requirements.	95

contact time may have a negative and/or positive effects on the adsorptive removal of dyes. When equilibrium is established between the active sites of the adsorbent and dye molecules, a further increment in the reaction time has no involvement in the adsorption. Khan and Nazir (2015) have observed an adsorption capacity of 217.39 mg g^{-1} for bromothymol blue in 30 min on an Fe₂O₃/chitosan-bamboo saw-dust composite.²⁹⁸ In contrast, an adsorption capacity of 1057.90 mg g^{-1} for MO dye was achieved on a nano-dimensional Co/Cr-codoped ZnO adsorbent in 120 min, indicating that an increase in reaction time has positive effects on the adsorption process.²¹⁹

6. Mechanisms of dye adsorption

The adsorption of dye from contaminated water on the surface of an adsorbent is achieved via various adsorption mechanisms, as schematically shown in Fig. 18 and displayed in Tables 2–7. It should be noted that the adsorption of water pollutants on adsorbents is mainly guided by electrostatic attraction, $\pi-\pi$ interactions, van der Waals forces, hydrogen bonding, acid–base reactions, and hydrophobic interaction.¹ Shen and Gondal reported that electrostatic and intermolecular interactions govern the adsorption of Rhodamine dye on the surface of the adsorbent. 60 According to Zheng et al., the adsorption of anionic dyes, such as CR and MO on GO–NiFe-LDH, is achieved by electrostatic attraction and ion exchange phenomena.¹⁷⁸

Furthermore, the ion exchange mechanism involves the exchange of ions between a liquid (dye solution) and solid phase (adsorbent). Ebrahimian Pirbazari et al. suggested that two principal mechanisms are involved in removing the MB dye on NaOH-treated wheat straw impregnated with $Fe₃O₄$, namely the formation of a surface complex and ion exchange between the dye molecule and adsorption surfaces. 214 The formation of a surface complex is a mechanism associated with the adsorption process, which is described by the binding of ions to various surface functional groups available onto the surface of the adsorbent and electrostatic interaction between the adsorbent–adsorbate surfaces. Cojocaru et al. proposed that the formation of hydrogen bonds between Acid Orange 7 dye and adsorbents accounts for the adsorption process. 64 According to Siddiqui et al., H-bonds between MB and $MnO₂/BC$ arise due to the interaction between the -OH groups present in $MnO₂/BC$ and the acceptor present in MB molecules.¹²³ Similarly, $\pi-\pi$ bonding/ π -effects/ π -interactions (noncovalent) involve π systems, where similar to electrostatic interactions, positively charged molecules interact with negatively charged surfaces. Further, the adsorption process can follow more than one mechanism simultaneously. For example, the adsorption of Coomassie Brilliant Blue R 250 dye on the surface of adsorbents is governed by electrostatic interactions, $\pi-\pi$ interactions, and intermolecular H-bonding.⁶³ The probable adsorption mechanisms involved in dye removal are shown in Fig. 18, together with the various adsorption processes. Review Motions Article 2022. Maximal controller the model of the Sample of the Common Access Article is article in the common Creative in the common Creative Common Creative Common Creative Common Creative Common Creative

Fig. 18 Adsorption processes and mechanisms for dye removal from bulk liquid

7. Critiques, future perspectives, and summary

7.1. Critiques and future perspectives

Adsorption is the most preferred technique for dye removal due to its ease of operation, high efficiency, recyclability, and costeffectiveness. This is also one of the most suitable methods employed for both pilot and field-scale wastewater treatment facilities. The adsorption ability depends on the type of adsorbent used in the removal of dyes from contaminated water. Therefore, adsorbents should have easy availability, costeffectiveness, high porosity, recycling ability, and abundant active sites on its surface. Recently, commercial adsorbents, such as industrial waste-based adsorbents for the treatment of dyes, pesticides, pharmaceuticals, etc., have received considerable attention due to their involvement in waste minimization. Besides, metal oxide-based adsorbents are also preferred on a large scale due to their unique properties, such as highly active sites and ability to blend with other sorbents. Furthermore, metal–organic framework- and polymer-based adsorbents have also been explored as adsorbents in the treatment of dyecontaminated water owing to their enhanced surface activity and porosity. Considering this, future studies could target the better utilization of commercial and natural bio-adsorbents having good adsorption and desorption capabilities, recyclability, and cost-effectiveness. MOFs and polymer-based adsorbents can be widely researched for wastewater treatment. The adsorption techniques can also be explored in the field of micropollutant remediation such as dyes, pharmaceuticals, and other emerging contaminants at the field scale.

Continuing research is focused on adsorption as one of the prime strategies in the separation of dye from wastewater. However, challenges still exist in developing low-cost, high-performing adsorbents with significantly enhanced activity and long-term stability. In this regard, integrating agro-industrial waste, several naturally existing materials, and eco-friendly industrial waste materials with other biodegradable nanomaterials with no risk to human health and environmental sustainability may be the best alternative. Further, the choice of nanomaterials as adsorbents in wastewater treatment is guided by their high surface area and high adsorption capacity. However, the production cost of nanoadsorbents needs to be considered for their commercial use in any industrial effluent treatment. Despite this, the separation of nanomaterials after adsorption and their disposal are complex and costly processes.³⁰⁵

Additionally, cost-effectiveness in terms of reusability of the spent adsorbent should also be considered. Spent adsorbents need to be regenerated and activated by treating them with acid or alkali for their safe and effective reuse.³⁰⁶ Further, the economical and safe disposal or reuse of spent/exhausted adsorbents need to be considered.307,308 Dye-loaded spent adsorbents can be utilized to produce biochar materials, fuel cells, for energy production purposes, and also in landfilling.^{307,309} Simultaneously, the difficulties and limitations in the scale-up of the treatment technology at the commercial level need to be considered in terms of economic aspects and energy-related issues.

7.2. Summary

The disposal of colored dye wastewater in the environment has depleted freshwater resources and compelled scientists to rethink the availability of clean and safe water. It has been reported that the presence of toxic and colored compounds in dye-containing wastewater results in carcinogenic, mutagenic, allergic, and dermatitis effects on living organisms. This review article reported various classes of dyes and their applications, ecotoxic effects, and sources of dye-contaminated water. The textile, leather, and cosmetic industries were found to be the primary sources of dye-polluted water. Different existing treatment techniques were reviewed and compared for dye removal. Among them, adsorption was selected as a potential technique to treat dye wastewater due to its easy application, simple and scalable synthesis of adsorbents, high removal efficiency, and cost-effectiveness. In this direction, the various adsorbents reported for the removal of dyes from aqueous solution were highlighted. In addition, investigations revealing the adsorption kinetics and fitting of the adsorption isotherm were also presented. MOFs, metal-oxides, and hybrids of bio-adsorbents and carbon show significant adsorption ability for dye contaminants. Various critical factors, such as solution pH, adsorbent dosage, initial dye concentration, temperature, and equilibrium time, were identified as essential factors influencing the adsorption process. Besides, the driving forces responsible for the adsorption of dye molecules are electrostatic interactions, van der Waals forces, hydrogen bonding, and $\pi-\pi$ interactions. Thus, the high removal efficiency and field applicability of the adsorption technique make this process suitable for the treatment of dye-contaminated water. Materials Advances

7. Critiques and future perspectives, and

7.2. Summary

SUMMING and future perspectives

7.1. Critiques and future perspectives

7.1. Critiques and future perspectives

7.4. Critiques and future perspe

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

S. Dutta and B. Gupta are grateful to the Indian Institute of Technology Kharagpur, India, for financial support.

References

- 1 F. Lu and D. Astruc, Coord. Chem. Rev., 2020, 408, 213180.
- 2 J. K. H. Wong, H. K. Tan, S. Y. Lau, P. S. Yap and M. K. Danquah, J. Environ. Chem. Eng., 2019, 7, 103261.
- 3 S. Benkhaya, S. M'rabet and A. El Harfi, Inorg. Chem. Commun., 2020, 115, 107891.
- 4 J. Chen, Y. Xiong, M. Duan, X. Li, J. Li, S. Fang, S. Qin and R. Zhang, Langmuir, 2020, 36, 520–533.
- 5 C. Sahoo, A. K. Gupta and A. Pal, Desalination, 2005, 181, 91–100.
- 6 C. Sahoo and A. K. Gupta, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 2015, 50, 1333–1341.
- 7 H. Znad, K. Abbas, S. Hena and M. R. Awual, J. Environ. Chem. Eng., 2018, 6, 218–227.
- 8 C. Sahoo, A. K. Gupta and I. M. S. Pillai, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 2012, 47, 2109–2119.
- 9 E. Guerra, M. Llompart and C. Garcia-Jares, Cosmetics, 2018, 5, 47.
- 10 N. R. J. Hynes, J. S. Kumar, H. Kamyab, J. A. J. Sujana, O. A. Al-Khashman, Y. Kuslu, A. Ene and B. Suresh Kumar, J. Cleaner Prod., 2020, 272, 122636.
- 11 M. Rafatullah, O. Sulaiman, R. Hashim and A. Ahmad, J. Hazard. Mater., 2010, 177, 70–80.
- 12 C. Sahoo, A. K. Gupta and I. M. Sasidharan Pillai, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 2012, 47, 1428–1438.
- 13 S. Senapati, S. K. Srivastava, S. B. Singh and A. R. Kulkarni, Environ. Res., 2014, 135, 95–104.
- 14 Y. Zhou, J. Lu, Y. Zhou and Y. Liu, Environ. Pollut., 2019, 252, 352–365.
- 15 A. Gičević, L. Hindija and A. Karačić, IFMBE Proceedings, Springer Verlag, 2020, vol. 73, pp. 581–587.
- 16 A. Ghosal, J. Shah, R. K. Kotnala and S. Ahmad, J. Mater. Chem. A, 2013, 1, 12868–12878.
- 17 C. J. Ogugbue and T. Sawidis, Biotechnol. Res. Int., 2011, 2011, 1–11.
- 18 A. Nasar and F. Mashkoor, Environ. Sci. Pollut. Res., 2019, 26, 5333–5356.
- 19 K. Deering, E. Spiegel, C. Quaisser, D. Nowak, S. Rakete, M. Garí and S. Bose-O'Reilly, Environ. Res., 2020, 184, 109271.
- 20 E. Von Lau, S. Gan, H. K. Ng and P. E. Poh, Environ. Pollut., 2014, 184, 640–649.
- 21 B. Lellis, C. Z. Fávaro-Polonio, J. A. Pamphile and J. C. Polonio, Biotechnol. Res. Innov., 2019, 3, 275–290.
- 22 M. T. Yagub, T. K. Sen, S. Afroze and H. M. Ang, Adv. Colloid Interface Sci., 2014, 209, 172–184.
- 23 N. Nippatla and L. Philip, Process Saf. Environ. Prot., 2019, 125, 143–156.
- 24 K. Meerbergen, S. Crauwels, K. A. Willems, R. Dewil, J. Van Impe, L. Appels and B. Lievens, J. Biosci. Bioeng., 2017, 124, 668–673.
- 25 B. Dong, H. Chen, Y. Yang, Q. He and X. Dai, Desalin. Water Treat., 2014, 52, 4562–4567.
- 26 K. Rachna, A. Agarwal and N. Singh, Mater. Today: Proc., 2019, 12, 573–580.
- 27 A. Ahmadi Zahrani and B. Ayati, J. Electroanal. Chem., 2020, 873, 114456.
- 28 M. Shaban, M. R. Abukhadra, A. Hamd, R. R. Amin and A. Abdel Khalek, J. Environ. Manage., 2017, 204, 189–199.
- 29 S. Samsami, M. Mohamadi, M. H. Sarrafzadeh, E. R. Rene and M. Firoozbahr, Process Saf. Environ. Prot., 2020, 143, 138–163.
- 30 H. C. Tee, P. E. Lim, C. E. Seng, M. A. Mohd Nawi and R. Adnan, J. Environ. Manage., 2015, 147, 349–355.
- 31 S. Sonal, D. Ugale and B. K. Mishra, Mine Water Environ., 2021, 1, 3.
- 32 B. Gupta, T. Priya and B. Kumar Mishra, Environ. Eng. Res., 2020, 26, 200234.
- 33 N. Daneshvar, A. Oladegaragoze and N. Djafarzadeh, J. Hazard. Mater., 2006, 129, 116–122.
- 34 T. Priya, A. Tarafdar, B. Gupta and B. K. Mishra, J. Environ. Sci., 2018, 70, 1–10.
- 35 A. Majumder, B. Gupta and A. K. Gupta, Environ. Res., 2019, 176, 108542.
- 36 C. Manera, A. P. Tonello, D. Perondi and M. Godinho, Environ. Technol., 2019, 40, 2756–2768.
- 37 B. Gupta, A. K. Gupta, C. S. Tiwary and P. S. Ghosal, Environ. Res., 2020, 110390.
- 38 B. Gupta, A. K. Gupta, P. S. Ghosal and C. S. Tiwary, Environ. Res., 2020, 109154.
- 39 S. K. Kuila, D. K. Gorai, B. Gupta, A. K. Gupta, C. S. Tiwary and T. K. Kundu, Chemosphere, 2020, 128780.
- 40 K. G. Pavithra, P. Senthil Kumar, V. Jaikumar and P. Sundar Rajan, J. Ind. Eng. Chem., 2019, 75, 1–19.
- 41 C. Sahoo, A. K. Gupta and A. Pal, Dyes Pigm., 2005, 66, 189–196.
- 42 A. K. Gupta, A. Pal and C. Sahoo, Dyes Pigm., 2006, 69, 224–232.
- 43 C. Sahoo and A. K. Gupta, J. Hazard. Mater., 2012, 215–216, 302–310.
- 44 CPHEEO, Manual on Sewerage and Sewage Treatment Systems – 2013:Central Public Health & Environmental Engineering Organisation (CPHEEO), Govt of India, 2013. **Review Macc**ess Article computer Article 2021. The computer Article on Office 2021. A straight particle 2021. A straight and the computer and the computer and the computer and the common and the common Attribution 3.0 Cre
	- 45 T. H. Kim, Y. Lee, J. Yang, B. Lee, C. Park and S. Kim, Desalination, 2004, 168, 287–293.
	- 46 S. Dutta, K. Manna, S. K. Srivastava, A. K. Gupta and M. K. Yadav, Sci. Rep., 2020, 10, 1–14.
	- 47 G. Xiong, B. Bin Wang, L. X. You, B. Y. Ren, Y. K. He, F. Ding, I. Dragutan, V. Dragutan and Y. G. Sun, J. Mater. Chem. A, 2019, 7, 393–404.
	- 48 Y. Xiong, Q. Wang, M. Duan, J. Tan, S. Fang and J. Wu, Langmuir, 2018, 34, 7612–7623.
	- 49 Y. Tong, P. J. McNamara and B. K. Mayer, Environ. Sci.: Water Res. Technol., 2019, 5, 821–838.
	- 50 K. Dutta and S. De, J. Mater. Chem. A, 2017, 5, 22095–22112.
	- 51 M. R. Awual, Chem. Eng. J., 2015, 266, 368–375.
	- 52 S. A. El-Safty, M. A. Shenashen, M. Ismael, M. Khairy and M. R. Awual, Analyst, 2012, 137, 5278–5290.
	- 53 M. R. Awual, Mater. Sci. Eng., C, 2019, 101, 686–695.
	- 54 M. R. Awual, Composites, Part B, 2019, 172, 387–396.
	- 55 M. R. Awual, J. Environ. Chem. Eng., 2019, 7, 103124.
	- 56 M. R. Awual, M. M. Hasan, M. M. Rahman and A. M. Asiri, J. Mol. Liq., 2019, 283, 772–780.
	- 57 M. R. Awual, J. Environ. Chem. Eng., 2019, 7, 103378.
	- 58 M. R. Awual, T. Yaita, T. Kobayashi, H. Shiwaku and S. Suzuki, J. Environ. Chem. Eng., 2020, 8, 103684.
	- 59 M. K. Yadav, D. Saidulu, A. K. Gupta, P. S. Ghosal and A. Mukherjee, J. Environ. Chem. Eng., 2021, 9, 105203.
	- 60 K. Shen and M. A. Gondal, J. Saudi Chem. Soc., 2017, 21, S120–S127.
	- 61 H. Chafai, M. Laabd, S. Elbariji, M. Bazzaoui and A. Albourine, J. Dispersion Sci. Technol., 2017, 38, 832–836.
	- 62 N. Mohammadi, H. Khani, V. K. Gupta, E. Amereh and S. Agarwal, J. Colloid Interface Sci., 2011, 362, 457–462.
- 63 B. M. Thamer, A. Aldalbahi, M. Moydeen A, H. El-Hamshary, A. M. Al-Enizi and M. H. El-Newehy, Mater. Chem. Phys., 2019, 234, 133–145. **Place is a Article is Article Commons Article is licensed on 2021.** This article is a Article is article in the state is licensed on 2021. A state in the state is licensed on 2021. A state is licensed under a state in the
	- 64 C. Cojocaru, P. Samoila and P. Pascariu, Int. J. Biol. Macromol., 2019, 123, 587–599.
	- 65 V. K. Gupta, Suhas, I. Ali and V. K. Saini, Ind. Eng. Chem. Res., 2004, 43, 1740–1747.
	- 66 S. K. Srivastava, S. Senapati, S. B. Singh and P. K. Raul, RSC Adv., 2016, 6, 113424.
	- 67 A. K. Sahoo, S. K. Srivastava, P. K. Raul, A. K. Gupta and R. Shrivastava, J. Nanopart. Res., 2014, 16, 1–17.
	- 68 P. Basnet and Y. Zhao, J. Mater. Chem. A, 2014, 2, 911–914.
	- 69 C. B. Godiya, L. A. Martins Ruotolo and W. Cai, J. Mater. Chem. A, 2020, 8, 21585–21612.
	- 70 J. L. Gong, B. Wang, G. M. Zeng, C. P. Yang, C. G. Niu, Q. Y. Niu, W. J. Zhou and Y. Liang, J. Hazard. Mater., 2009, 164, 1517–1522.
	- 71 D. A. Yaseen and M. Scholz, Int. J. Environ. Sci. Technol., 2019, 16, 1193–1226.
	- 72 Pubchem, Home PubChem Compound NCBI, [https://](https://www.ncbi.nlm.nih.gov/pccompound) [www.ncbi.nlm.nih.gov/pccompound,](https://www.ncbi.nlm.nih.gov/pccompound) (accessed 3 February 2021).
	- 73 K. Yamjala, M. S. Nainar and N. R. Ramisetti, Food Chem., 2016, 192, 813–824.
	- 74 L. C. Davies, G. J. M. Cabrita, R. A. Ferreira, C. C. Carias, J. M. Novais and S. Martins-Dias, Ecol. Eng., 2009, 35, 961–970.
	- 75 M. Kashefialasl, M. Khosravi, R. Marandi and K. Seyyedi, Int. J. Environ. Sci. Technol., 2006, 2, 365–371.
	- 76 K. Jain, D. Madamwar and O. Tiwari, Mapping of Research Outcome on Remediation of Dyes, Dye Intermediates and Textile Industrial Waste, 2019.
	- 77 S. Shakoor and A. Nasar, J. Taiwan Inst. Chem. Eng., 2016, 66, 154–163.
	- 78 H. Xiao, T. Zhao, C. H. Li and M. Y. Li, J. Cleaner Prod., 2017, 165, 1499–1507.
	- 79 A. C. Jalandoni-Buan, A. L. A. Decena-Soliven, E. P. Cao, V. L. Barraquio and W. L. Barraquio, Philipp. J. Sci., 2010, 139, 71–78.
	- 80 D. T. Sponza and M. Işik, Process Biochem., 2005, 40, 2735–2744.
	- 81 S. M. Burkinshaw and Y. A. Son, Dyes Pigments, 2010, 87, 132–138.
	- 82 G. Muthuraman and T. T. Teng, Prog. Nat. Sci., 2009, 19, 1215–1220.
	- 83 G. L. Baughman and E. J. Weber, Dyes Pigm., 1991, 16, 261–271.
	- 84 C. D. Raman and S. Kanmani, J. Environ. Manage., 2016, 177, 341–355.
	- 85 A. A. Shalaby and A. A. Mohamed, RSC Adv., 2020, 10, 11311–11316.
	- 86 K. R. Millington, K. W. Fincher and A. L. King, Sol. Energy Mater. Sol. Cells, 2007, 91, 1618–1630.
	- 87 M. Berradi, R. Hsissou, M. Khudhair, M. Assouag, O. Cherkaoui, A. El Bachiri and A. El Harfi, Heliyon, 2019, 5, e02711.
- 88 M. F. Abid, M. A. Zablouk and A. M. Abid-Alameer, J. Environ. Health Sci. Eng., 2012, 9, 1–9.
- 89 B. Manu and S. Chaudhari, Bioresour. Technol., 2002, 82, 225–231.
- 90 A. K. Yadav, C. K. Jain and D. S. Malik, J. Sustainable Environ. Res., 2014, 3, 95–102.
- 91 T. Robinson, G. McMullan, R. Marchant and P. Nigam, Bioresour. Technol., 2001, 77, 247–255.
- 92 J. Garvasis, A. R. Prasad, K. O. Shamsheera, P. K. Jaseela and A. Joseph, Mater. Chem. Phys., 2020, 251, 123040.
- 93 M. F. Abid, M. A. Zablouk and A. M. Abid-Alameer, Iran. J. Environ. Health Sci. Eng., 2012, 9, 1–9.
- 94 R. Singh, M. K. Sinha and M. K. Purkait, Sep. Purif. Technol., 2020, 250, 117247.
- 95 V. Katheresan, J. Kansedo and S. Y. Lau, J. Environ. Chem. Eng., 2018, 6, 4676–4697.
- 96 D. Saidulu, B. Gupta, A. K. Gupta and P. S. Ghosal, J. Environ. Chem. Eng., 2021, 105282.
- 97 N. Al-Bastaki, Chem. Eng. Process., 2004, 43, 1561–1567.
- 98 S. K. Nataraj, K. M. Hosamani and T. M. Aminabhavi, Desalination, 2009, 249, 12–17.
- 99 G. Moradi, S. Zinadini and L. Rajabi, Process Saf. Environ. Prot., 2020, 144, 65–78.
- 100 S. Senapati, S. K. Srivastava and S. B. Singh, Nanoscale, 2012, 4, 6604–6612.
- 101 A. Nasar and F. Mashkoor, Environ. Sci. Pollut. Res., 2019, 26, 5333–5356.
- 102 K. Y. Foo and B. H. Hameed, Desalin. Water Treat., 2010, 19, 255–274.
- 103 S. Sonal, P. Prakash, B. K. Mishra and G. C. Nayak, RSC Adv., 2020, 10, 13783–13798.
- 104 X. W. Liu, T. J. Sun, J. L. Hu and S. D. Wang, J. Mater. Chem. A, 2016, 4, 3584–3616.
- 105 P. K. Malik, J. Hazard. Mater., 2004, 113, 81–88.
- 106 C. Djilani, R. Zaghdoudi, F. Djazi, B. Bouchekima, A. Lallam, A. Modarressi and M. Rogalski, J. Taiwan Inst. Chem. Eng., 2015, 53, 112–121.
- 107 M. S. Rahman, Water, Air, Soil Pollut., 2021, 232, 1–14.
- 108 D. A. Giannakoudakis, G. Z. Kyzas, A. Avranas and N. K. Lazaridis, J. Mol. Liq., 2016, 213, 381–389.
- 109 E. Akar, A. Altinişik and Y. Seki, Ecol. Eng., 2013, 52, 19-27.
- 110 M. A. Ahmad, N. B. Ahmed, K. A. Adegoke and O. S. Bello, Chem. Data Collect., 2019, 22, 100249.
- 111 L. Ding, B. Zou, W. Gao, Q. Liu, Z. Wang, Y. Guo, X. Wang and Y. Liu, Colloids Surf., A, 2014, 446, 1–7.
- 112 S. S. Lam, R. K. Liew, Y. M. Wong, P. N. Y. Yek, N. L. Ma, C. L. Lee and H. A. Chase, J. Cleaner Prod., 2017, 162, 1376–1387.
- 113 A. Khan, X. Wang, K. Gul, F. Khuda, Z. Aly and A. M. Elseman, Egypt. J. Basic Appl. Sci., 2018, 5, 171–182.
- 114 B. Szczęśniak, J. Phuriragpitikhon, J. Choma and M. Jaroniec, J. Mater. Chem. A, 2020, 8, 18464–18491.
- 115 A. H. Jawad, R. A. Rashid, M. A. M. Ishak and L. D. Wilson, Desalin. Water Treat., 2016, 57, 25194–25206.
- 116 M. Asadullah, M. Asaduzzaman, M. S. Kabir, M. G. Mostofa and T. Miyazawa, J. Hazard. Mater., 2010, 174, 437–443.
-
- 117 A. T. Ojedokun and O. S. Bello, Appl. Water Sci., 2017, 7, 1965–1977.
- 118 T. N. V. de Souza, S. M. L. de Carvalho, M. G. A. Vieira, M. G. C. da Silva and D. do S. B. Brasil, Appl. Surf. Sci., 2018, 448, 662–670.
- 119 A. Aichour, H. Zaghouane-Boudiaf, C. V. Iborra and M. S. Polo, J. Mol. Liq., 2018, 256, 533–540.
- 120 G. Crini, Bioresour. Technol., 2006, 97, 1061–1085.
- 121 V. S. Mane and P. V. V. Babu, Desalination, 2011, 273, 321–329.
- 122 S. I. Abubakar and M. B. Ibrahim, Bayero J. Pure Appl. Sci., 2019, 11, 273.
- 123 S. I. Siddiqui, O. Manzoor, M. Mohsin and S. A. Chaudhry, Environ. Res., 2019, 171, 328–340.
- 124 K. G. Bhattacharyya and A. Sarma, Dyes Pigm., 2003, 57, 211–222.
- 125 S. Chowdhury, S. Chakraborty and P. Saha, Colloids Surf., B, 2011, 84, 520–527.
- 126 F. Deniz and S. Karaman, Chem. Eng. J., 2011, 170, 67–74.
- 127 M. Peydayesh and A. Rahbar-Kelishami, J. Ind. Eng. Chem., 2015, 21, 1014–1019.
- 128 A. K. Jain, V. K. Gupta, A. Bhatnagar and Suhas, J. Hazard. Mater., 2003, 101, 31–42.
- 129 L. Li, S. Wang and Z. Zhu, J. Colloid Interface Sci., 2006, 300, 52–59.
- 130 A. Bhatnagar and A. K. Jain, J. Colloid Interface Sci., 2005, 281, 49–55.
- 131 L. Zhou, H. Zhou, Y. Hu, S. Yan and J. Yang, J. Environ. Manage., 2019, 234, 245–252.
- 132 M. A. Abdel-Khalek, M. K. Abdel Rahman and A. A. Francis, J. Environ. Chem. Eng., 2017, 5, 319–327.
- 133 W. Gao, S. Zhao, H. Wu, W. Deligeer and S. Asuha, Appl. Clay Sci., 2016, 126, 98–106.
- 134 S. C. R. Santos and R. A. R. Boaventura, Appl. Clay Sci., 2008, 42, 137–145.
- 135 A. Xue, S. Zhou, Y. Zhao, X. Lu and P. Han, Appl. Clay Sci., 2010, 48, 638–640.
- 136 R. Yang, D. Li, A. Li and H. Yang, Appl. Clay Sci., 2018, 151, 20–28.
- 137 P. P. Selvam, S. Preethi, P. Basakaralingam, N. Thinakaran, A. Sivasamy and S. Sivanesan, J. Hazard. Mater., 2008, 155, 39–44.
- 138 Y. Kismir and A. Z. Aroguz, Chem. Eng. J., 2011, 172, 199–206.
- 139 K. El Hassani, B. H. Beakou, D. Kalnina, E. Oukani and A. Anouar, Appl. Clay Sci., 2017, 140, 124–131.
- 140 L. Chen, C. Li, Y. Wei, G. Zhou, A. Pan, W. Wei and B. Huang, J. Alloys Compd., 2016, 687, 499–505.
- 141 G. L. Dotto, V. M. Esquerdo, M. L. G. Vieira and L. A. A. Pinto, Colloids Surf., B, 2012, 91, 234–241.
- 142 E. Daneshvar, M. S. Sohrabi, M. Kousha, A. Bhatnagar, B. Aliakbarian, A. Converti and A. C. Norrström, J. Taiwan Inst. Chem. Eng., 2014, 45, 2926–2934.
- 143 K. Song, H. Xu, L. Xu, K. Xie and Y. Yang, Bioresour. Technol., 2017, 232, 254–262.
- 144 J. Wu, T. Zhang, C. Chen, L. Feng, X. Su, L. Zhou, Y. Chen, A. Xia and X. Wang, Bioresour. Technol., 2018, 266, 134–138.
- 145 M. M. Hasan, M. A. Shenashen, M. N. Hasan, H. Znad, M. S. Salman and M. R. Awual, J. Mol. Liq., 2021, 323, 114587.
- 146 K. T. Kubra, M. S. Salman, H. Znad and M. N. Hasan, J. Mol. Liq., 2021, 329, 115541.
- 147 S. D. Khattri and M. K. Singh, Water, Air, Soil Pollut., 2000, 120, 283–294.
- 148 M. P. Da Rosa, A. V. Igansi, S. F. Lütke, T. R. Sant'anna Cadaval, A. C. R. Do Santos, A. P. De Oliveira Lopes Inacio, L. A. De Almeida Pinto and P. H. Beck, J. Environ. Chem. Eng., 2019, 7, 103504. Review Macchess Articles. Published on 0. S. Relio, Appl. Woor Sci., 2017, 7, 145 M.M.Hasan, M.A.Sheraaben, M.N.Tasan, H. Zoni, M.S. 2020, 2021. But a Shamon and D.A. Relian, H. Zoni, 2022. 2021. But a share of the Creati
	- 149 S. Dogar, S. Nayab, M. Q. Farooq, A. Said, R. Kamran, H. Duran and B. Yameen, ACS Omega, 2020, 5, 15850–15864.
	- 150 A. Amari, H. Gannouni, M. I. Khan, M. K. Almesfer, A. M. Elkhaleefa and A. Gannouni, Appl. Sci., 2018, 8, 2302.
	- 151 L. C. Paredes-Ouevedo, C. González-Caicedo, J. A. Torres-Luna and J. G. Carriazo, Water, Air, Soil Pollut., 2021, 232, 1–19.
	- 152 A. H. Pinto, J. K. Taylor, R. Chandradat, E. Lam, Y. Liu, A. C. W. Leung, M. Keating and R. Sunasee, J. Environ. Chem. Eng., 2020, 8, 104187.
	- 153 W. Bessashia, Y. Berredjem, Z. Hattab and M. Bououdina, Environ. Res., 2020, 186, 109484.
	- 154 H. Zhang, P. Wang, Y. Zhang, B. Cheng, R. Zhu and F. Li, RSC Adv., 2020, 10, 41251–41263.
	- 155 S. K. Srivastava and V. Mittal, Hybrid Nanomaterials: Advances in Energy, Environment and Polymer Nanocomposites, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2017.
	- 156 T. S. Kim, H. J. Song, M. A. Dar, H. J. Lee and D. W. Kim, Appl. Surf. Sci., 2018, 439, 364–370.
	- 157 S. R. Manippady, A. Singh, B. M. Basavaraja, A. K. Samal, S. Srivastava and M. Saxena, ACS Appl. Nano Mater., 2020, 3, 1571–1582.
	- 158 L. Meng, X. Zhang, Y. Tang, K. Su and J. Kong, Sci. Rep., 2015, 5, 1–16.
	- 159 L. Jin, X. Zhao, X. Qian and M. Dong, J. Colloid Interface Sci., 2018, 509, 245–253.
	- 160 Y. Wang, Y. Li, H. Li, H. Zheng and Q. Du, J. Polym. Environ., 2019, 27, 1342–1351.
	- 161 M. Kamaraj, N. R. Srinivasan, G. Assefa, A. T. Adugna and M. Kebede, Environ. Technol. Innov., 2020, 17, 100540.
	- 162 M. Goswami and P. Phukan, J. Environ. Chem. Eng., 2017, 5, 3508–3517.
	- 163 R. Gong, J. Ye, W. Dai, X. Yan, J. Hu, X. Hu, S. Li and H. Huang, Ind. Eng. Chem. Res., 2013, 52, 14297–14303.
	- 164 B. Pradhan, S. Roy, S. K. Srivastava and A. Saxena, J. Appl. Polym. Sci., 2015, 132, 41818.
	- 165 B. Bhuyan, S. K. Srivastava and J. Pionteck, Polym. Technol. Mater., 2019, 58, 537–546.
	- 166 C. H. Wu, J. Hazard. Mater., 2007, 144, 93–100.
	- 167 Y. Yao, H. Bing, X. Feifei and C. Xiaofeng, Chem. Eng. J., 2011, 170, 82–89.
	- 168 K. Sui, Y. Li, R. Liu, Y. Zhang, X. Zhao, H. Liang and Y. Xia, Carbohydr. Polym., 2012, 90, 399–406.
	- 169 M. Ghaedi, H. Khajehsharifi, A. H. Yadkuri, M. Roosta and A. Asghari, Toxicol. Environ. Chem., 2012, 94, 873–883.
	- 170 L. Ai, C. Zhang, F. Liao, Y. Wang, M. Li, L. Meng and J. Jiang, J. Hazard. Mater., 2011, 198, 282–290.
- 171 L. K. De Assis, B. S. Damasceno, M. N. Carvalho, E. H. C. Oliveira and M. G. Ghislandi, Environ. Technol., 2019, 41, 2360–2371.
- 172 V. Sabna, S. G. Thampi and S. Chandrakaran, Water Sci. Technol., 2018, 78, 732–742.
- 173 C. M. Bezerra de Araujo, G. Filipe Oliveira do Nascimento, G. Rodrigues Bezerra da Costa, K. Santos da Silva, A. M. Salgueiro Baptisttella, M. Gomes Ghislandi and M. Alves da Motta Sobrinho, Chem. Eng. Commun., 2019, 206, 1375–1387. **Place is Advances**

177 I. K. The Ass, b, R. S. Danumark Moto, R. S. C. 1916, R. S. Licence Moto, Licence Moto, Common A. C. C. Distribution and M. Downloaded on 2021, A. C. Danumark Common Access Articles. D. S. Licence
	- 174 S. T. Yang, S. Chen, Y. Chang, A. Cao, Y. Liu and H. Wang, J. Colloid Interface Sci., 2011, 359, 24–29.
	- 175 M. Sivakumar, S. Yadav, W. S. Hung and J. Y. Lai, J. Cleaner Prod., 2020, 263, 121498.
	- 176 P. Ranjan, J. Balakrishnan and A. D. Thakur, Materials Today: Proceedings, Elsevier Ltd, 2019, vol. 11, pp. 833–836.
	- 177 H. Kalita, H. Tyagi and M. Aslam, Environ. Sci.: Water Res. Technol., 2020, 6, 963–975.
	- 178 Y. Zheng, B. Cheng, W. You, J. Yu and W. Ho, J. Hazard. Mater., 2019, 369, 214–225.
	- 179 B. Mu, J. Tang, L. Zhang and A. Wang, Sci. Rep., 2017, 7, $1 - 12$.
	- 180 P. Bradder, S. K. Ling, S. Wang and S. Liu, J. Chem. Eng. Data, 2011, 56, 138–141.
	- 181 M. Heidarizad and S. S. Şengör, J. Mol. Liq., 2016, 224, 607–617.
	- 182 R. Guo, T. Jiao, R. Li, Y. Chen, W. Guo, L. Zhang, J. Zhou, Q. Zhang and Q. Peng, ACS Sustainable Chem. Eng., 2018, 6, 1279–1288.
	- 183 T. Jiao, Y. Liu, Y. Wu, Q. Zhang, X. Yan, F. Gao, A. J. P. Bauer, J. Liu, T. Zeng and B. Li, Sci. Rep., 2015, 5, 1–10.
	- 184 J. Wang, T. Chen, B. Xu and Y. Chen, Appl. Sci., 2020, 10, 8529.
	- 185 L. Dhar, S. Hossain, M. S. Rahman, S. B. Quraishi, K. Saha, F. Rahman and M. T. Rahman, J. Phys. Chem. A, 2021, 125, 965.
	- 186 H. Mahajan, S. K. Arumugasamy, A. Panda, V. Sada, M. Yoon and K. Yun, ACS Omega, 2020, 5, 24799–24810.
	- 187 S. Haque, S. Gain, K. Gupta and U. C. Ghosh, Water Qual. Res. J. Can., 2019, 54, 57–69.
	- 188 S. M. Goodman, R. Bura and A. B. Dichiara, ACS Appl. Nano Mater., 2018, 1, 5682–5690.
	- 189 M. Khajeh and A. Barkhordar, J. Appl. Spectrosc., 2020, 87, 701–707.
	- 190 S. K. Sahoo, S. Padhiari, S. K. Biswal, B. B. Panda and G. Hota, Mater. Chem. Phys., 2020, 244, 122710.
	- 191 A. R. B. Bayantong, Y. J. Shih, D. C. Ong, R. R. M. Abarca, C. Di Dong and M. D. G. de Luna, Chemosphere, 2021, 274, 129518.
	- 192 C. Lv, J. Zhang, G. Li, H. Xi, M. Ge and T. Goto, Colloids Surf., A, 2020, 585, 124147.
	- 193 E. Ruiz-Hitzky, P. Aranda, M. Darder and G. Rytwo, J. Mater. Chem., 2010, 20, 9306–9321.
	- 194 F. Marrakchi, W. A. Khanday, M. Asif and B. H. Hameed, Int. J. Biol. Macromol., 2016, 93, 1231–1239.
	- 195 A. Chakraborty and H. Acharya, Colloids Interface Sci. Commun., 2018, 24, 35–39.
- 196 R. R. Shan, L. G. Yan, Y. M. Yang, K. Yang, S. J. Yu, H. Q. Yu, B. C. Zhu and B. Du, J. Ind. Eng. Chem., 2015, 21, 561–568.
- 197 K. Abdellaoui, I. Pavlovic and C. Barriga, ChemEngineering, 2019, 3, 41.
- 198 R. M. Novais, J. Carvalheiras, D. M. Tobaldi, M. P. Seabra, R. C. Pullar and J. A. Labrincha, J. Cleaner Prod., 2019, 207, 350–362.
- 199 R. M. Novais, G. Ascensão, D. M. Tobaldi, M. P. Seabra and J. A. Labrincha, J. Cleaner Prod., 2018, 171, 783–794.
- 200 M. Attari, S. S. Bukhari, H. Kazemian and S. Rohani, J. Environ. Chem. Eng., 2017, 5, 391–399.
- 201 A. Duta and M. Visa, J. Photochem. Photobiol., A, 2015, 306, 21–30.
- 202 M. Gao, Q. Ma, Q. Lin, J. Chang and H. Ma, Appl. Surf. Sci., 2017, 396, 400–411.
- 203 W. A. Khanday, M. Asif and B. H. Hameed, Int. J. Biol. Macromol., 2017, 95, 895–902.
- 204 L. Liu, Z. Y. Gao, X. P. Su, X. Chen, L. Jiang and J. M. Yao, ACS Sustainable Chem. Eng., 2015, 3, 432–442.
- 205 Y. Akköz, R. Coşkun and A. Delibaş, J. Mol. Liq., 2019, 287, 110988.
- 206 S. Liu, H. Ge, C. Wang, Y. Zou and J. Liu, Sci. Total Environ, 2018, 628–629, 959–968.
- 207 Z. Cheng, J. Liao, B. He, F. Zhang, F. Zhang, X. Huang and L. Zhou, ACS Sustainable Chem. Eng., 2015, 3, 1677–1685.
- 208 M. Khan, M. N. Tahir, S. F. Adil, H. U. Khan, M. R. H. Siddiqui, A. A. Al-Warthan and W. Tremel, J. Mater. Chem. A, 2015, 3, 18753–18808.
- 209 K. Manna and S. Kumar Srivastava, ACS Sustainable Chem. Eng., 2017, 5, 10710–10721.
- 210 S. Gao, W. Zhang, H. Zhou and D. Chen, J. Rare Earths, 2018, 36, 986–993.
- 211 S. Phoemphoonthanyakit, P. Seeharaj, P. Damrongsak and K. Locharoenrat, J. Spectrosc., 2019, 2019, 1–5.
- 212 W. Song, B. Gao, X. Xu, L. Xing, S. Han, P. Duan, W. Song and R. Jia, Bioresour. Technol., 2016, 210, 123–130.
- 213 X. Liu, S. An, X. Zhou, L. Zhang, Y. Zhang, W. Shi and J. Yang, J. Dispersion Sci. Technol., 2014, 35, 1727–1736.
- 214 A. Ebrahimian Pirbazari, E. Saberikhah and S. S. Habibzadeh Kozani, Water Resour. Ind., 2014, 7–8, 23–37.
- 215 N. N. Nassar, Sep. Sci. Technol., 2010, 45, 1092–1103.
- 216 A. Mahapatra, B. G. Mishra and G. Hota, Ceram. Int., 2013, 39, 5443–5451.
- 217 N. H. Singh, K. Kezo, A. Debnath and B. Saha, Appl. Organomet. Chem., 2018, 32, e4165.
- 218 X. Wan, Y. Zhan, Z. Long, G. Zeng and Y. He, Chem. Eng. J., 2017, 330, 491–504.
- 219 Z. Li, Y. Sun, J. Xing, Y. Xing and A. Meng, J. Hazard. Mater., 2018, 352, 204–214.
- 220 C. Lei, M. Pi, D. Xu, C. Jiang and B. Cheng, Appl. Surf. Sci., 2017, 426, 360–368.
- 221 R. M. Mohamed, A. Shawky and I. A. Mkhalid, J. Phys. Chem. Solids, 2017, 101, 50–57.
- 222 C. Lei, X. Zhu, Y. Le, B. Zhu, J. Yu and W. Ho, RSC Adv., 2016, 6, 10272–10279.
- 223 F. Duan, W. Dong, D. Shi and M. Chen, Appl. Surf. Sci., 2011, 258, 189–195.
- 224 H. Wang and Y. Wei, RSC Adv., 2017, 7, 9079–9089.
- 225 A. Faghihi, M. H. Vakili, G. Hosseinzadeh, M. Farhadian and Z. Jafari, Desalin. Water Treat., 2016, 57, 22655–22670.
- 226 G. Y. Abate, A. N. Alene, A. T. Habte and Y. A. Addis, J. Polym. Environ., 2020, 29, 967–984.
- 227 J. H. Deng, X. R. Zhang, G. M. Zeng, J. L. Gong, Q. Y. Niu and J. Liang, Chem. Eng. J., 2013, 226, 189–200.
- 228 H. Zhang, X. Li, G. He, J. Zhan and D. Liu, Ind. Eng. Chem. Res., 2013, 52, 16902–16910.
- 229 H. Nayebzadeh, F. Naderi and B. Rahmanivahid, J. Inorg. Organomet. Polym. Mater., 2020, 31, 776–789.
- 230 R. Foroutan, S. J. Peighambardoust, Z. Esvandi, H. Khatooni and B. Ramavandi, J. Environ. Chem. Eng., 2020, 104752.
- 231 S. Ahmadipouya, M. Heidarian Haris, F. Ahmadijokani, A. Jarahiyan, H. Molavi, F. Matloubi Moghaddam, M. Rezakazemi and M. Arjmand, J. Mol. Liq., 2021, 322, 114910.
- 232 B. Rahmanivahid, F. Naderi and H. Nayebzadeh, J. Water Environ. Nanotechnol., 2020, 5, 1–16.
- 233 J. L. Liu, W. C. Qian, J. Z. Guo, Y. Shen and B. Li, Bioresour. Technol., 2021, 320, 124374.
- 234 C. Shen, Y. Shen, Y. Wen, H. Wang and W. Liu, Water Res., 2011, 45, 5200–5210.
- 235 W. Yao, C. Shen and Y. Lu, Compos. Sci. Technol., 2013, 87, 8–13.
- 236 T. Lv and B. Li, J. Polym. Environ., 2020, 29, 1576–1590.
- 237 S. Foroughirad, V. Haddadi-Asl, A. Khosravi and M. Salami-Kalajahi, Polym. Adv. Technol., 2021, 32, 803–814.
- 238 X. Zheng, H. Zheng, R. Zhao, Z. Xiong, Y. Wang, Y. Sun and W. Ding, J. Mol. Liq., 2020, 319, 114161.
- 239 L. W. Jiang, F. T. Zeng, Y. Zhang, M. Y. Xu, Z. W. Xie, H. Y. Wang, Y. X. Wu, F. A. He and H. L. Jiang, Adv. Powder Technol., 2021, 32, 492–503.
- 240 A. H. Jawad, N. N. A. Malek, A. S. Abdulhameed and R. Razuan, J. Polym. Environ., 2020, 28, 1068–1082.
- 241 S. A. Ahmed and E. M. Soliman, Appl. Surf. Sci., 2013, 284, 23–32.
- 242 T. Poursaberi and M. Hassanisadi, Clean: Soil, Air, Water, 2013, 41, 1208–1215.
- 243 G. J. Joshiba, P. S. Kumar, M. Govarthanan, P. T. Ngueagni, A. Abilarasu and F. Carolin C, Environ. Pollut., 2021, 269, 116173.
- 244 J. Chen, Q. Cao and X. Han, J. Cleaner Prod., 2021, 287, 125003.
- 245 A. Ansari Mojarad, S. Tamjidi and H. Esmaeili, Int. J. Environ. Anal. Chem., 2020, 00, 1–22.
- 246 P. Mirzapour, B. Kamyab Moghadas, S. Tamjidi and H. Esmaeili, Sep. Sci. Technol., 2020, 00, 1–15.
- 247 L. Ai, H. Yue and J. Jiang, Nanoscale, 2012, 4, 5401–5408.
- 248 M. Hu, X. Yan, X. Hu, J. Zhang, R. Feng and M. Zhou, J. Colloid Interface Sci., 2018, 510, 111–117.
- 249 J. Xu, D. Xu, B. Zhu, B. Cheng and C. Jiang, Appl. Surf. Sci., 2018, 435, 1136–1142.
- 250 E. Haque, V. Lo, A. I. Minett, A. T. Harris and T. L. Church, J. Mater. Chem. A, 2014, 2, 193–203.
- 251 Z. Wang, J. H. Zhang, J. J. Jiang, H. P. Wang, Z. W. Wei, X. Zhu, M. Pan and C. Y. Su, J. Mater. Chem. A, 2018, 6, 17698–17705.
- 252 L. L. Liu, J. Chen, Y. Zhang, C. X. Yu, W. Du, X. Q. Sun, J. Lou Zhang, F. L. Hu, Y. Mi and L. F. Ma, J. Mater. Chem. A, 2021, 9, 546–555. Review Macchain Access Articles. Published on 2021. Download on 2021. Downloaded and Licensed on Access Article. Published on 2022. The Creative Commons Articles. This article is licensed at the National Access Articles. T
	- 253 S. Begum, Z. Hassan, S. Bräse and M. Tsotsalas, Langmuir, 2020, 36, 10657–10673.
	- 254 E. M. Dias and C. Petit, J. Mater. Chem. A, 2015, 3, 22484–22506.
	- 255 W. Xiang, Y. Zhang, Y. Chen, C. J. Liu and X. Tu, J. Mater. Chem. A, 2020, 8, 21526–21546.
	- 256 C. Li, Z. Xiong, J. Zhang and C. Wu, J. Chem. Eng. Data, 2015, 60, 3414–3422.
	- 257 M. Oveisi, M. A. Asli and N. M. Mahmoodi, J. Hazard. Mater., 2018, 347, 123–140.
	- 258 E. Haque, J. E. Lee, I. T. Jang, Y. K. Hwang, J. S. Chang, J. Jegal and S. H. Jhung, J. Hazard. Mater., 2010, 181, 535–542.
	- 259 M. Tong, D. Liu, Q. Yang, S. Devautour-Vinot, G. Maurin and C. Zhong, J. Mater. Chem. A, 2013, 1, 8534–8537.
	- 260 X. Zhao, S. Liu, Z. Tang, H. Niu, Y. Cai, W. Meng, F. Wu and J. P. Giesy, Sci. Rep., 2015, 5, 1–10.
	- 261 J. Abdi, M. Vossoughi, N. M. Mahmoodi and I. Alemzadeh, Chem. Eng. J., 2017, 326, 1145–1158.
	- 262 J. Zhao, L. Xu, Y. Su, H. Yu, H. Liu, S. Qian, W. Zheng and Y. Zhao, J. Environ. Sci., 2021, 101, 177–188.
	- 263 A. Muhammad, A. ul H. A. Shah and S. Bilal, Materials, 2019, 12, 2854.
	- 264 S. Dutta, S. K. Srivastava and A. K. Gupta, Mater. Adv., 2021, 2, 2431–2443.
	- 265 K. T. Kubra, M. S. Salman and M. N. Hasan, J. Mol. Liq., 2021, 328, 115468.
	- 266 H. Md. Munjur, M. N. Hasan, M. R. Awual, M. M. Islam, M. A. Shenashen and J. Iqbal, J. Mol. Liq., 2020, 319, 114356.
	- 267 P. Bober, I. M. Minisy, U. Acharya, J. Pfleger, V. Babayan, N. Kazantseva, J. Hodan and J. Stejskal, Synth. Met., 2020, 260, 116266.
	- 268 S. Acharya, S. Sahoo, S. Sonal, J. H. Lee, B. K. Mishra and G. C. Nayak, Composites, Part B, 2020, 193, 107913.
	- 269 M. Tanzifi, S. H. Hosseini, A. D. Kiadehi, M. Olazar, K. Karimipour, R. Rezaiemehr and I. Ali, J. Mol. Liq., 2017, 244, 189–200.
	- 270 M. Saad, H. Tahir, J. Khan, U. Hameed and A. Saud, Ultrason. Sonochem., 2017, 34, 600–608.
	- 271 V. Sharma, P. Rekha and P. Mohanty, J. Mol. Liq., 2016, 222, 1091–1100.
	- 272 R. S. Aliabadi and N. O. Mahmoodi, J. Cleaner Prod., 2018, 179, 235–245.
	- 273 M. Ayad and S. Zaghlol, Chem. Eng. J., 2012, 204–205, 79–86.
	- 274 J. Smita, J. Dipika and K. Shraddha, Int. J. Sci. Eng. Manage., 2016, 1, 1–6.
	- 275 W. A. Amer, M. M. Omran, A. F. Rehab and M. M. Ayad, RSC Adv., 2018, 8, 22536–22545.
	- 276 M. M. Ayad and A. A. El-Nasr, J. Phys. Chem. C, 2010, 114, 14377–14383.
	- 277 M. Bhaumik, R. I. McCrindle, A. Maity, S. Agarwal and V. K. Gupta, J. Colloid Interface Sci., 2016, 466, 442–451.
	- 278 V. Janaki, K. Vijayaraghavan, B. T. Oh, K. J. Lee, K. Muthuchelian, A. K. Ramasamy and S. Kamala-Kannan, Carbohydr. Polym., 2012, 90, 1437–1444.
- 279 M. Bin Yeamin, M. M. Islam, A. N. Chowdhury and M. R. Awual, J. Cleaner Prod., 2021, 291, 125920.
- 280 E. A. El-Sharkaway, R. M. Kamel, I. M. El-Sherbiny and S. S. Gharib, Environ. Technol., 2020, 41, 2854–2862.
- 281 M. Shabandokht, E. Binaeian and H. A. Tayebi, Desalin. Water Treat., 2016, 57, 27638–27650.
- 282 P. E. Díaz-Flores, C. J. Guzmán-Álvarez, V. M. Ovando-Medina, H. Martínez-Gutiérrez and O. González-Ortega, Desalin. Water Treat., 2019, 155, 350–363.
- 283 N. Wang, J. Chen, J. Wang, J. Feng and W. Yan, Powder Technol., 2019, 347, 93–102.
- 284 S. Agarwal, I. Tyagi, V. K. Gupta, F. Golbaz, A. N. Golikand and O. Moradi, J. Mol. Liq., 2016, 218, 494–498.
- 285 V. K. Gupta, D. Pathania, N. C. Kothiyal and G. Sharma, J. Mol. Liq., 2014, 190, 139–145.
- 286 L. Wang, X. L. Wu, W. H. Xu, X. J. Huang, J. H. Liu and A. W. Xu, ACS Appl. Mater. Interfaces, 2012, 4, 2686–2692.
- 287 M. M. Ayad, A. Abu El-Nasr and J. Stejskal, J. Ind. Eng. Chem., 2012, 18, 1964–1969.
- 288 M. M. Ayad and A. A. El-Nasr, J. Nanostruct. Chem., 2012, 3, 1–9.
- 289 M. A. Salem, R. G. Elsharkawy and M. F. Hablas, Eur. Polym. J., 2016, 75, 577–590.
- 290 H. Javadian, M. T. Angaji and M. Naushad, J. Ind. Eng. Chem., 2014, 20, 3890–3900.
- 291 M. R. Patil and V. S. Shrivastava, Desalin. Water Treat., 2016, 57, 5879–5887.
- 292 K. Rachna, A. Agarwal and N. B. Singh, Environ. Nanotechnol., Monit. Manage., 2018, 9, 154–163.
- 293 M. Vakili, M. Rafatullah, B. Salamatinia, A. Z. Abdullah, M. H. Ibrahim, K. B. Tan, Z. Gholami and P. Amouzgar, Carbohydr. Polym., 2014, 113, 115–130.
- 294 R. A. A. Muzzarelli, J. Boudrant, D. Meyer, N. Manno, M. Demarchis and M. G. Paoletti, Carbohydr. Polym., 2012, 87, 995–1012. **Materials Advances**

279 M, Rin Vennin, M. M. Islam, A. W. Closedbury and 294 R. A. A. Morarchis India, G. Holechy, N. Moreov

28 B. A. Awall, L Creative Cot. 2021. 2022. December 2022. December 2024-09-21 2. Unport 202
	- 295 V. Janaki, B. T. Oh, K. Shanthi, K. J. Lee, A. K. Ramasamy and S. Kamala-Kannan, Synth. Met., 2012, 162, 974–980.
	- 296 P. Kannusamy and S. Thambidurai, Colloids Surf., B, 2013, 108, 229–238.
	- 297 I. M. Lipatova, L. I. Makarova and A. A. Yusova, Chemosphere, 2018, 212, 1155–1162.
	- 298 T. A. Khan and M. Nazir, Environ. Prog. Sustainable Energy, 2015, 34, 1444–1454.
	- 299 G. J. Copello, A. M. Mebert, M. Raineri, M. P. Pesenti and L. E. Diaz, J. Hazard. Mater., 2011, 186, 932–939.
	- 300 S. Agarwal, H. Sadegh, M. Monajjemi, A. S. Hamdy, G. A. M. Ali, A. O. H. Memar, R. Shahryari-Ghoshekandi, I. Tyagi and V. K. Gupta, J. Mol. Liq., 2016, 218, 191–197.
	- 301 N. Nekouei Marnani and A. Shahbazi, Chemosphere, 2019, 218, 715–725.
	- 302 Z. Eren and F. N. Acar, Desalination, 2006, 194, 1–10.
	- 303 M. A. M. Salleh, D. K. Mahmoud, W. A. W. A. Karim and A. Idris, Desalination, 2011, 280, 1–13.
	- 304 A. E. Ofomaja and Y. S. Ho, Dyes Pigm., 2007, 74, 60–66.
	- 305 S. A. Mazari, E. Ali, R. Abro, F. S. A. Khan, I. Ahmed, M. Ahmed, S. Nizamuddin, T. H. Siddiqui, N. Hossain, N. M. Mubarak and A. Shah, J. Environ. Chem. Eng., 2021, 9, 105028.
	- 306 S. Homaeigohar, Nanomaterials, 2020, 10, 1–42.
	- 307 D. Harikishore Kumar Reddy, K. Vijayaraghavan, J. A. Kim and Y. S. Yun, Adv. Colloid Interface Sci., 2017, 242, 35–58.
	- 308 S. Lata, P. K. Singh and S. R. Samadder, Int. J. Environ. Sci. Technol., 2015, 12, 1461–1478.
	- 309 Y. Feng, D. D. Dionysiou, Y. Wu, H. Zhou, L. Xue, S. He and L. Yang, Bioresour. Technol., 2013, 138, 191–197.