Issue 21, 2024

Design and regulation of defective electrocatalysts

Abstract

Electrocatalysts are the key components of electrochemical energy storage and conversion devices. High performance electrocatalysts can effectively reduce the energy barrier of the chemical reactions, thereby improving the conversion efficiency of energy devices. The electrocatalytic reaction mainly experiences adsorption and desorption of molecules (reactants, intermediates and products) on a catalyst surface, accompanied by charge transfer processes. Therefore, surface control of electrocatalysts plays a pivotal role in catalyst design and optimization. In recent years, many studies have revealed that the rational design and regulation of a defect structure can result in rearrangement of the atomic structure on the catalyst surface, thereby efficaciously promoting the electrocatalytic performance. However, the relationship between defects and catalytic properties still remains to be understood. In this review, the types of defects, synthesis methods and characterization techniques are comprehensively summarized, and then the intrinsic relationship between defects and electrocatalytic performance is discussed. Moreover, the application and development of defects are reviewed in detail. Finally, the challenges existing in defective electrocatalysts are summarized and prospected, and the future research direction is also suggested. We hope that this review will provide some principal guidance and reference for researchers engaged in defect and catalysis research, better help researchers understand the research status and development trends in the field of defects and catalysis, and expand the application of high-performance defective electrocatalysts to the field of electrocatalytic engineering.

Graphical abstract: Design and regulation of defective electrocatalysts

Article information

Article type
Review Article
Submitted
06 3 2024
First published
13 9 2024

Chem. Soc. Rev., 2024,53, 10620-10659

Design and regulation of defective electrocatalysts

Y. Zhang, J. Liu, Y. Xu, C. Xie, S. Wang and X. Yao, Chem. Soc. Rev., 2024, 53, 10620 DOI: 10.1039/D4CS00217B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements