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Machine learning has been pervasively touching many fields of science. Chem-
istry and materials science are no exception. While machine learning has been
making a great impact, it is still not reaching its full potential or maturity. In
this perspective, we first outline current applications across a diversity of prob-
lems in chemistry. Then, we discuss how machine learning researchers view
and approach problems in the field. Finally, we provide our considerations for
maximizing impact when researching machine learning for chemistry.

1 Introduction

Machine learning (ML) has been applied in many facets of chemistry, and its use
is rapidly growing. We argue in this perspective that despite this dramatic growth
and impact, ML could be employed better and more extensively. Current work
is still far from exhausting the potential of ML to advance theory and application
in chemistry in terms of breadth, depth, and scale. In addition, the actual types
of problems that ML could tackle, such as hypothesis generation or enabling
internalized scientific understanding, are still areas of active research or open
problems.
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To color a picture of the field, we begin by outlining a taxonomy of the chemi-
cal problems to which ML has been applied, ranging from prediction, generation,
synthesis, force fields, spectroscopy, reaction optimization, and foundation mod-
els. Shifting gears, we then introduce types of problems in ML and show how
chemical problems can be reformulated as instances of ML problems. These
standard problems help organize the toolbox of algorithms and theory provided
by ML. Digging further into this perspective, we examine differences in practices
and values between the ML and chemistry communities and highlight where col-
laboration and cross-pollinating perspectives can advance both fields. Armed
with the above, we can then discuss how to select impactful applications of ML
in chemistry and recommend our suggested good practices for research in this
area.

2 Chemistry meets data: A taxonomy of problems
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Fig. 1 A taxonomy of chemical problems related to machine learning. Each arrow
indicates an application of ML and signifies how all these relate to each other.
Foundation models and self-driving labs touch all these areas.

Chemistry, and science in general, involves data in one form or another. Not
surprisingly, then, data science is integral to chemistry. Machine learning, a sub-
field of data science, has become an integral tool in our domain science’s arsenal.
Therefore, it is crucial to begin cataloguing and organizing critical efforts to date.

We suggest a taxonomy of the chemical problems to which machine learning
has been applied. As shown in Figure 1, ML has been applied to solve various
chemical problems by encoding and decoding to and from chemical structure,
properties, 3D structure and dynamics, and experimental data. For reasons of
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space, time, and focus, this is not a comprehensive review but rather an opportu-
nity to highlight diverse applications of ML in chemistry. We will not introduce
ML algorithms in detail. For exhaustive reviews, please see other works.1–6

2.1 Structure to property: property prediction

2.1.1 Cheminformatics and quantitative structure-activity relationships.
Chemistry has leveraged data to predict properties from a chemical structure long
before the everyday use of the term “machine learning”. This field has been origi-
nally identified initially as cheminformatics. These tools sought to store, retrieve,
and model chemical structures. Early examples began in 1957 with substructure
searches in a database,7 followed by simple multivariate regression for learning
quantitative structure-activity relationships8 (QSAR) between molecular descrip-
tors like Hammett constants and partition coefficients, and biological activity.9,10

These were mostly property-activity relationships – the first structure-activity re-
lationships involved local explanations analyzing how substituents on a ring af-
fected activity,11 which could be generalized to many scaffolds via substructural
analysis.12 Eventually, computers automatically encoded molecular structures as
fingerprints – bit-vectors that store the presence or absence of many substructures
found in the molecule.13 These fingerprints were useful in encoding molecular
structures to predict molecular activity in simple models such as support vector
machines.14

2.1.2 Representing molecules with expert descriptors. While chemists
have a conceptual understanding of the effects of functional groups on the prop-
erties of a molecule, communicating this information to a model is critical to en-
sure that the model is predictive. Expert descriptors infuse chemical knowledge
derived from experiments or conceptual knowledge into the features provided
to a model and have achieved good predictive performance, especially in low-
data regimes. These expert descriptors also generalize well outside the model’s
training set, as chemical knowledge is baked into these features. As early as
1937, Hammett fitted sigma parameters for predicting the influence of chemi-
cal substituents on reactivity.15 Additionally, group contribution methods, which
assume that structural components or functionalizations behave the same way
across many different molecules, parameterize these components into numerical
features that can be used to predict molecular properties.16–18 The discipline has
since grown to involve molecular fingerprinting techniques and the incorporation
of 2D and even 3D information for use in prediction. In more recent times, as the
properties of a homogeneous transition metal catalyst are strongly influenced by
the ligands attached to it, parameterizing the structural and electronic features of
these phosphine ligands has also been successful in predicting the properties of a
catalyst.19–21 Looping back to historical models, recent work has also been able
to leverage density functional theory (DFT) and machine learning to successfully
machine learn Hammett parameters.22

2.1.3 Learned chemical representations. Models have become more com-
plex with advances in computational hardware, moving from simple linear re-
gression models to complex architectures like auto-encoders, generative adver-
sarial networks, graph neural networks or transformers. Instead of relying on
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chemists to intuit the best way to represent a molecule, we can now harness
the ability of models to automatically learn and exploit complex patterns within
large amounts of data for property prediction. To a certain level of abstraction,
which tends to ignore 3D information or wave function properties, molecules
can be naturally represented as graphs where atoms are nodes and bonds are
edges. By relaxing the notion of fingerprints from discrete bit-vectors to contin-
uous feature vectors, we proposed graph neural networks to automatically learn
continuous representations of important substructures, achieving state-of-the-art
performance on molecular property prediction tasks.23,24 These representations
have been deployed widely across multiple avenues like machine learning for ol-
factory properties of a molecule,25 and in catalysis where adsorption properties
of adsorbates were predicted.26

While simple atomic and bond features required for the constructed graphs
can be generated quickly,27 the properties that one wants to target for predic-
tion are much harder to obtain – especially in higher qualities and fidelities. As
learned representations typically require large amounts of data, complicated ar-
chitectures do not function as well with low amounts of data gathered from typ-
ical experimental settings. To bridge this gap, molecular benchmarks were cre-
ated to assess the quality of such learned representations properly. These bench-
marks contain tasks gathered from literature data related to predicting biological
behaviours and physicochemical or quantum chemical properties and provide a
common ground on which different machine-learning architectures can harness
and exploit the same data in various ways for property prediction.28

To improve the performance of such graph embeddings, they can be further
tuned if there are some intuitions about how the embedding spaces should be
reshaped to reflect the distances between inputs properly. These can involve
strategies like making the embeddings aware of how chemical reactions should
transform these embeddings29 or through strategies like contrastive learning.30

Finally, for tasks sensitive to the molecule’s conformation in three dimensions,
incorporating three-dimensional representations that exceed the capability of the
innately deficient two-dimensional graphs has proven successful in predicting
molecular properties.31

2.1.4 Limits and open problems. Despite the great strides made in molec-
ular machine learning, the ability of machine learning models to extrapolate be-
yond the data it is trained on is still limited, posing barriers for application to
novel chemistries. Several approaches can potentially bridge these gaps. For ex-
ample, by using physics-informed models that can contain fundamental represen-
tations that help in generalizing the representation itself to satisfy some symme-
tries or properties related to the physical laws of nature. Active learning is also a
powerful tool for expanding datasets on the fly by capturing computational or ex-
perimental data for extrapolation. Additionally, while models have progressively
performed better on property prediction benchmark tasks, these benchmarks rep-
resent only a tiny subset of chemical tasks, making their performance on various
other tasks unknown.32 While we have attempted to create benchmarks more
representative of typical tasks,33 this is still not a central focus of the community.

Structure-to-property models have been widely employed in screening projects,
leading to experimentally verified predictions. We will discuss a few selected
case studies in Sec. 2.2.1.
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2.2 Property to structure: designing molecules in chemical space

While the rational design paradigm analyzes the relationship between structure
and properties to design promising molecules, another paradigm asks: what are
all the possible molecules that satisfy a given property? Solving this question is
known as the inverse design problem.

Chemical space is the set of all synthesizable molecules and is often cited
for having an astronomical size of at least 1033 to 1060 molecules.34,35 Within
this vast space are potential drugs that could cure current diseases and putative
materials that could enable a sustainable future.

2.2.1 Virtual screening. A simple approach to navigating chemical space
is to enumerate a feasible set of possible options and then narrow them down to
the best solution. This shift in perspective has its experimental implementation
employing strategies such as high-throughput screening of chemical libraries and
combinatorial chemistry to synthesize these libraries.36 Given the astronomical
size of chemical space, it became clear that arbitrarily searching through com-
pounds would produce few promising hits, making this approach inefficient as the
cost of extensive chemical synthesis campaigns is often taxing or prohibitive.37

This motivated virtual screening and computational search funnels as a way to
filter out unpromising compounds, leaving only the best candidates for synthesis
and testing. In drug discovery, molecules are filtered out with computationally
lean checks such as high molecular weight or problematic functional groups, fol-
lowed by more computationally intensive docking for estimating binding affinity,
ultimately narrowing down to a handful of lead compounds.38 Scaling the size of
virtual libraries increases the likelihood of promising hits, which has motivated
ever-larger screening campaigns requiring increasing computational resources.
One example was the Harvard Clean Energy Project,39 in which we searched
through 107 candidates with quantum chemistry calculations on distributed vol-
unteer computing to search for efficient organic photovoltaics.

Similarly, VirtualFlow40 docked over 109 molecules by efficiently using thou-
sands of CPU cores. As the size of chemical libraries grows, with the required
computational resources scaling linearly, hierarchical approaches to evaluate the
fitness of individual synthetic building blocks offer a way past linear scaling.41

2.2.2 Generative models for inverse design. As the size of chemical li-
braries surpasses 1015 molecules42 and becomes computationally prohibitive to
screen, ML offers ways to consider large search spaces without simulating all
molecules. For example, in a chemical library, many molecules should have
similar structures and properties, so running simulations on every molecule is
redundant. A formal way to handle this is to simulate a portion of the library
and then train property prediction models on this subset, which should be gen-
eralized across the library. Since these property prediction models are compu-
tationally cheaper than simulations, they can be evaluated for the entire library
and used to prioritize candidates for simulation. We leveraged this approach to
design organic light-emitting diodes that were verified experimentally.43

However, another arm of ML offers a way to consider all (or a vast subset)
of the chemical space. Given a dataset of molecules in a representation such as
SMILES strings, generative models learn to generate strings which resemble the
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dataset. Because generative models can consider arbitrary strings, they could po-
tentially generate any molecule in chemical space. They can also be conditioned
to generate molecules with desired properties – essentially reversing the prop-
erty prediction process.44,45 Molecular generative models have been applied with
many model classes. We pioneered the use of variational autoencoders (VAEs)46

for this purpose. Other examples include autoregressive models,47 generative-
adversarial networks (GANs),48 and reinforcement learning,49,50 amongst many
other sampling strategies. Generative models have also been extended and shown
to work well with various representations like SMILES, SELFIES,51 and Group
SELFIES52 strings, as well as molecular graphs and fragments. Molecular opti-
mization methods such as genetic algorithms53 and Bayesian optimization54 also
have been sometimes called generative models despite not learning a molecular
distribution per se. A recent review of different generative model classes and
representations can be found in Gao et al.,55 although this is a rapidly moving
field.

As more generative models were proposed, benchmarks such as GuacaMol56

and MOSES57 began evaluating and comparing different generative models based
on validity, novelty, uniqueness, and goal-directed optimization. Optimization
has been such a primary focus that molecular design can be regarded as a combi-
natorial optimization of molecular properties over the space of molecular graphs.
In this way, a new benchmark emphasizes sample efficiency, which is the number
of property evaluations needed to reach optimal molecules.55 In addition, more
realistic benchmark tasks relying on simulation have been recently proposed by
us in the Tartarus benchmark set.33 Tartarus more closely resembles real-world
scenarios where computational and experimental resources are constrained.

However, by departing from chemical libraries for the entire chemical space,
generative models relaxed the crucial constraint of synthesizability. Generative
models can suggest molecules which are difficult to synthesize and evaluate.58

To overcome this, synthesizable generative models consider chemical synthe-
sis pathways when generating molecules, ensuring that the generated molecules
are not only theoretically valid but also practicably synthesizable.59–61 Other
approaches combine virtual libraries with generative approaches to ensure that
proposed molecules are always from the library.62 These methods have partic-
ular relevance for high-throughput arrays and self-driving laboratories, as pre-
dicted molecules that are not synthetically feasible with readily available plat-
forms could slow down closed-loop approaches.

For a comprehensive overview of these advancements and the state of the art
in molecule design, Du et al. provide an excellent review, summarizing the latest
developments and methodologies in the field.63

Generative models have proven worthy in the recent years. Quite notably
the company InSilico Medicine has employed them to generate several drugs
that are undergoing clinical trials currently. In 2019, together with InSilico and
Wuxi Apptec researchers, we showed the ability of generative models to develop
a lead drug candidate in approximately 45 days.64 Many researchers since then
have continued to show other examples of generative models in drug discovery.
For example, Barzilay and co-workers have developed antibiotics using similar
approaches.65
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2.2.3 Limits and open problems. While candidates can be generated easily
with such models, the quality of the candidates depends on the ability to develop
a properly performing and scalable cost function for conditioning the generative
models. Additionally, these models are trained on approximate metrics, which
means that their real-life performance still has to be evaluated. Thus, evaluating
the synthesizability of a candidate or providing steps to make candidates is of
paramount importance (see next section).

Most generative models have been developed with simple benchmarks in
mind, such as predicting simple properties like logP. However, developing us-
ing proper benchmarks (such as Tartarus) or restricting them to feasible sets of
molecules, such as those synthesizable with self-driving labs (see Sec. 2.7), re-
mains a challenge.

2.3 Structure to structure: synthesis planning and reaction condition pre-
diction

Synthesis planning – i.e. finding synthetic pathways that give rise to a desir-
able target molecule – is an open challenge that chemists have faced for over
a century, particularly in the “molecular world” of drug discovery, agricultural
chemistry or molecular materials chemistry. This problem is complex in two
respects: First, predicting the outcome of a specific unseen reaction, given all
reactants, reagents, and reaction conditions, is effectively an unsolved problem
to date. Second, even with such a “reaction prediction” tool at hand, finding
feasible multi-step sequences of reactions that eventually enable the synthesis of
the target molecule from cheap and commercially available precursors requires
searching a massive network of possible pathways. Additional challenges arise
from practical demands to the synthesis planning problem: efficiency, cost, waste
production, sustainability, safety, or toxicity are practical concerns, especially in
an industrial setting.

2.3.1 Synthesis planning. Synthesis planning is classically addressed through
the formalism of retrosynthesis, as pioneered by Nobel Prize winner E. J. Corey:66

Using knowledge of chemical reactivity, the target molecule is gradually discon-
nected into progressively simpler precursors, which eventually yields commer-
cially available starting materials. Formally, this corresponds to a tree search
problem. As early as in the 1960s, Corey realized that this approach is ideally
suited to be tackled in a computational manner.67 Since then, a number of expert
systems have been developed to guide this tree search.68

The past decade has seen significant progress in addressing this challenge
using the toolbox of ML. In this context, the key “decision policy” has often
been treated as a multi-task regression problem: Given the structure of a tar-
get molecule, a ML model is trained to predict an applicable reaction out of
a catalog of reactions.69–71 This symbolic approach, however, requires a pre-
defined catalogue of all reaction types, often referred to as reaction “rules” or
“templates”, which itself presents new obstacles. There is neither a generally
accepted definition of the term “reaction rule” nor an unambiguous procedure
to perform reaction rule extraction from data. Alternatively, “template-free” ap-
proaches to the one-step reaction prediction problem, predict reactions as graph
edits in the starting material graph,72 or solve a sequence-to-sequence “product-
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to-starting-material” translation task.73,74 Notably, these models (template and
template-free) can be similarly trained in the forward direction, predicting reac-
tion products from starting materials.

These single-step prediction models have been used to build tree search mod-
els, which aim to solve the full synthesis planning problem. In this context, a
Monte-Carlo tree search is usually the method of choice. Following the pioneer-
ing works from Segler et al.75 and Coley et al.,76 a number of mostly open-source
systems have been released.77,78

2.3.2 Prediction and optimization of reaction conditions. What is often
overlooked in synthesis planning is that knowing a possibly suitable reaction type
alone does not guarantee that the envisioned intermediate or target product can
be prepared from the proposed starting materials. The question if the product can
be obtained (ideally in high yield), crucially depends on what is often referred to
as the reaction conditions: the choice of reagent(s), catalyst(s), additive(s) and
solvent, the values of continuous parameters such as stoichiometries, tempera-
ture and reaction time, as well as the practical details of running the reaction
in the laboratory. In an ideal scenario, an AI-assisted tool would take in a new
“starting-material-to-product” transformation, and spit out the required reaction
conditions for this transformation. However, this is yet to be achieved, partic-
ularly because reaction conditions cover a vast combinatorial parameter space
and are frequently governed by underlying physical principles that are difficult
to simulate. In practice, reaction conditions are often selected by employing
“nearest-neighbor” reasoning based on literature precedents, either automatically
or through human expertise.

Machine learning approaches to reaction condition optimization have thus
mainly focused on regression modelling of reaction yields as a function of re-
action conditions. In this context, data-driven approaches have intersected with
regression techniques from physical organic chemistry, which attempt to model
reaction outcomes based on mechanistic considerations. In highly constrained
condition spaces, purely data-driven, supervised learning of product yields on
systematically generated data from high-throughput experimentation has shown
promising results.79–83 For example, our work on optimizing the E/Z ratio of
a reaction relevant to pharmaceutical process chemistry showed that only with
≈ 100 experiments we were able to outperform what had been the state-of-the-
art for this process by human-only reaction optimization.84 Meanwhile, the use
of literature data for the same purpose is highly flawed,85,86 usually necessitat-
ing individual, case-by-case reaction optimization (see below for a more detailed
discussion). Black-box optimization algorithms, particularly Bayesian Optimiza-
tion (BO), have become increasingly prominent over the past decade.6,87 In BO,
probabilistic models for predicting reaction yields are built through Bayesian in-
ference with existing data. These models then iteratively guide decision-making
throughout the optimization process. The idea of iterative, closed-loop optimiza-
tion with ML-based surrogate models is discussed further in Sec. 2.7. For condi-
tion optimization, these iterative approaches have demonstrated remarkable suc-
cess in increasingly complex synthetic reaction scenarios.87 At the same time,
chemistry-specific challenges, such as the identification of conditions which are
“generally applicable” to a wide variety of substrates, as opposed to just one or
a few model substrates, have inspired algorithmic advances in the field.88,89 No-
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tably, our work on the Suzuki reaction88 led to generally applicable conditions
with double the yield of the previous state-of-the-art in the field.

2.3.3 Limits and open problems. While the field of ML-based synthesis
planning has seen significant algorithmic advances during the past ten years, its
practical utility has remained limited to the development of relatively simple tar-
get molecules and short synthetic routes. In fact, as of today, expert systems,
which involve manually coding reaction types and applicability rules, represent
the state of the art in computer-aided synthesis planning. In particular, Grzy-
bowski’s Chematica system (now commercialized as Synthia)90 has had impres-
sive experimental applications,91 even in complex natural product synthesis,92,93

or supply-chain-aware synthesis planning.94,95 In principle, while ML-based al-
gorithms should be capable of providing similar or superior synthetic routes com-
pared to these expert systems, the current shortcomings can mainly be attributed
to deficiencies in the quality and quantity of available synthesis data and algorith-
mic limitations in extracting structured knowledge from the data. We and others
have extensively discussed these factors recently.96

Similar data limitations have also been discussed in the context of reaction
outcome and reaction condition prediction. Patent data97 and even commercial
databases are highly problematic not only because of erroneous, inconsistent or
unstructured data reporting: Human biases in the reported experiments, partic-
ularly the accumulation of prominent conditions and the lack of low-yielding
records, have prevented predictive modelling of reaction yields from literature
data.85,86 Community-driven, open source data repositories such as the Open
Reaction Database98 represent an essential step towards less biased and more
holistic data collection – but such initiatives require a more digitized mindset in
the way data is generated, collected and reported in synthetic organic chemistry
laboratories.

A further consequence of this data deficiency is the lack of representative
benchmark problem sets. This applies to multi-step synthesis planning, where
benchmarks are urgently needed for a more quantitative evaluation of synthesis
planning performance. Similarly, optimization algorithms for chemical reactiv-
ity would benefit from representative benchmarks to evaluate how standard BO
algorithms translate to the intricacies of chemical reactivity. Most importantly,
such benchmarks must reflect real-life problems, as identified by expert chemists,
in order to inspire and motivate algorithmic ML advances to tackle the challenges
in computer-aided organic synthesis.

2.4 Structure to physics: simulation and 3D structure

Machine learning has enabled data-driven solutions to both experimental prob-
lems and computational problems. Whereas organic chemistry emphasizes molecules’
2D molecular graph structure, molecules are also grounded in 3D physical reality
by the Schrödinger equation, providing a rich theory of quantum mechanics and
statistical mechanics for predicting molecular properties and interactions. Simu-
lation methods such as density functional theory (DFT) and molecular dynamics
(MD) then use this theory to computationally predict molecular properties and in-
teractions. However, despite continual increases in computing power, these sim-
ulations remain computationally costly, which has restricted simulation to small
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systems at short timescales. By learning from the results of many simulations,
ML offers a unique opportunity to accelerate molecular simulation.

2.4.1 Neural network potentials. A fundamental problem in quantum chem-
istry is: given a molecule represented as a collection of nuclear points in 3D
space, solve the Schrödinger equation and predict the total energy and the forces
on each atom. Forces then enable simulation of dynamics forward in time using
Newton’s equations. However, solving the Schrödinger equation is complex and
computationally costly for molecular systems, and simulating Newton’s equa-
tions requires forces at every frame of simulation. For this reason, forces were ap-
proximated by simple functions fitted to experimental data, giving rise to the first
parameterized force fields such as the Lennard-Jones potential.99 Semiempirical
models incorporated many more experimentally fitted parameters for predicting
energy and forces.100 These empirical force fields enabled classical molecular
dynamics simulations, allowing study of simple proteins.101 However, capturing
behavior like chemical reactivity requires incorporating quantum effects. Ad-
vances in computer power and faster simulation methods such as density func-
tional theory (DFT) eventually made it possible to solve the Schrödinger equation
at every timestep with ab initio molecular dynamics, but at large computational
cost.102

A significant shift came with the introduction of neural force fields. By train-
ing neural networks on DFT data to predict energy and forces directly from 3D
nuclear coordinates, molecular dynamics could now be propagated at ab initio ac-
curacy at a much lower computational cost.103 Since forces must be equivariant
to the molecule’s rotation – i.e. if the molecule is rotated, the molecular forces
must “rotate along with it” – this motivated the development of equivariant neural
architectures to respect this symmetry.104–106 Neural force fields have been com-
petitively benchmarked in ML, continually comparing different architectures and
methods on several benchmarks. A detailed timeline of development of these
equivariant architectures is given in Duval et al.107 As datasets of energy and
forces have grown, such as the Open Catalyst Benchmark,108 neural force fields
have started striving for universal applicability.109

2.4.2 Predicting wavefunctions and electron densities. An alternative to
predicting energies with force fields is to predict the wavefunction or electron
density itself. The advantage is that these objects contain energy and the rest of
the system’s physical observables. For example, neural networks can be trained
to predict the Hamiltonian matrix directly from the nuclear coordinates.110,111

Diagonalizing the Hamiltonian matrix gives the molecular orbitals, which com-
prise the wavefunction. Furthermore, self-consistent field iteration can be initial-
ized using the predicted wavefunction, allowing faster convergence of the quan-
tum chemistry. Recently, it was shown that neural networks can be trained so that
their output satisfies the self-consistency equation, bypassing the need for labels
of Hamiltonian matrices.112

Furthermore, neural networks can be used as ansätze to represent the wave-
function itself directly. In this case, the network takes as input electron coordi-
nates, and outputs wavefunction amplitude. Using the same stochastic optimiza-
tion algorithms, neural wavefunctions can be trained to minimize the variational
energy and satisfy the Schrödinger equation.113–117 This approach has recently
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been extended to excited states.118

Alternatively, for density functional theory, neural networks can be trained to
directly predict charge density given the nuclear coordinates.119–121 ML has also
been applied to learn density functionals.122

2.4.3 Predicting and generating 3D structure. Even if fast and accurate
force fields were available, many problems rely on finding energetically preferred
conformations of molecules. However, conformational space remains huge and
cannot be practically enumerated, especially for large systems like proteins. Sim-
ilarly, when modelling chemical reactions, the sizeable conformational search
space makes it challenging to identify transition states. To solve these problems,
ML approaches can predict and generate 3D structure directly.

The large conformational search space motivates generative models to nav-
igate this space. Unconditional generative models such as equivariant diffusion
models can generate 3D atomic positions and atom types simultaneously.123 For
the problem of conformer search, which seeks stable 3D configurations for a
given molecule, atom types can held constant while generation is conditioned
on the 2D molecular graph. Some approaches generate atom positions freely,124

while other approaches generate torsion angles of rotatable bonds.125,126 Recent
work has shown that forgoing both torsional and rotational symmetry constraints
can yield better results, but at a higher cost.127 A related task known as docking
performs conformer search of a ligand inside a protein pocket, as an estimate of
binding affinity. This has also been approached with diffusion models.128

In the problem of crystal structure prediction, the goal is to find the most sta-
ble periodic arrangement of atoms for a given composition. While traditional
approaches search through all stable configurations of coordinates and lattice
vectors to find the lowest energy structure,129 equivariant diffusion models have
found a natural fit for this problem, diffusing both coordinates and lattice pa-
rameters simultaneously,130,131 while also enforcing space group constraints132

to enhance performance further. Indeed, scaling this diffusion approach to large
datasets enabled inverse design to satisfy multiple desired properties simultane-
ously.133

In the fields related to the simulation of biomolecules, 3D structure predic-
tion problems are abundant. The longstanding problem of predicting folded 3D
protein structure from protein sequence has, to a certain extent, been solved by
AlphaFold2.134 and related models. Building on this approach, diffusion mod-
els have generated protein backbones represented as sequences of rigid bodies
of residues.135,136 These models have been so successful that they have been
used to design proteins satisfying structural constraints, which have been exper-
imentally validated.137,138 The scope of these diffusion models has expanded to
all biomolecules, with methods predicting how proteins, RNA, DNA, and ligands
assemble in 3D atomistic detail,139,140 subsuming the task of docking, and hence,
promising to become a de-facto conditioning function for drug discovery in the
future.

2.4.4 Enhanced sampling and coarse-grained simulation. While finding
the most stable geometry is useful, truly modelling the thermodynamic interac-
tions between molecules requires sampling the equilibrium distribution of 3D
structures. Equilibrium states follow a Boltzmann distribution with respect to
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the energy, and generative models which learn this equilibrium distribution are
known as Boltzmann generators.141 Deep generative models are beginning to
solve this problem using flow matching,142 a variant of diffusion models, and
transferability has been demonstrated across many different peptides.143 Another
approach learns to sample equilibrium distributions by leveraging the Fokker-
Planck equation.144

In coarse-graining one typically groups atoms together into so-called beads,
which afford lower computational cost and the possibility to capture long timescale
events. However, the forces on these coarse beads then need to be fitted to all-
atom forces. To circumvent this, neural networks can be applied to learn coarse-
grained force fields by predicting the gradient of the free energy, rather than
the energy, and matching these predicted forces on coarse-grained beads to the
all-atom forces.145–147 Flow-matching148 removes the requirement for all-atom
forces, needing only equilibrium samples of coarse-grained beads. Furthermore,
diffusion models can simultaneously learn a generative model and coarse-grained
force field.149

While coarse-grained force fields are significantly faster to evaluate than
atomistic ones, MD simulations are still limited by having to use femtosecond-
level integration time steps. Alternative methods for equilibrium methods focus
on accelerating molecular dynamics to reach long timescales. This can be done
through “coarse-graining in time,” which trains generative models to predict the
outcome of taking large timesteps.150,151

Lastly, work has been carried out towards extending models to multiple ranges
of thermodynamic properties like temperature and pressure.152 This allows simu-
lation of different environments as well as training on previously unsuitable data.
Adding extra parameters like temperature to the model input, one can add the
corresponding derivatives of the coarse-grained free energy function to the loss.
Response properties which are higher order derivatives of the free energy can
be computed via multiple backward passes. Incorporating thermodynamic pa-
rameters might be one of the key ingredients to simulate biological or industrial
settings in a holistic manner.

For rare-event sampling like chemical reactions and transition state search,
methods for sampling transition paths without reaction coordinates have been
emerging.153,154 Alternatively, when datasets of reactants, products, and transi-
tion states are available, generative models can be directly trained to generate
transition states conditioned on reactants and products.155,156

2.4.5 Limits and open problems. While neural force fields can achieve
great accuracy, they still require enough training data to cover the entire phase
space. Without complete coverage, neural force fields can stumble into unstable
dynamics. One benchmark emphasizes that force fields should be judged by their
dynamics, not their force errors.157

However, these issues may begin to go away as neural forces are trained on
ever larger datasets in the quest for universal force fields. Though ML models
are limited by the quality of their data, the fact that new data can be generated by
simulation paints a promising picture for data availability and large models.

At the same time, much work remains to reach simulation at large length
and time scales. The most significant challenges of proper equilibrium sampling
under metastable conditions and the related problem of rare-event sampling also
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remain areas in need of improvement and, therefore, the focus of many recent
efforts.

2.5 Structure and analysis: spectroscopy and elucidation

One natural yet underexplored area of ML application in chemistry is structure
elucidation, which aims to predict 2D or 3D molecular structures from spectro-
scopic or other analytical data. Just as computer vision enables computers to
perceive the natural world, computational spectroscopy could allow machines to
perceive the molecular world through analytical instruments. The anticipated in-
crease in the synthesis of de novo and unknown compounds through advances
in experimentation automation drives the need for faster yet accurate structure
elucidation to fully support these autonomous molecular and reaction discovery
platforms.

2.5.1 Forward spectral prediction. The most straightforward approach to
data-driven structure elucidation is to store a library of spectra, search for a match
in the library for a given spectrum, and then retrieve the corresponding struc-
ture. To increase the coverage of the library, forward spectral prediction can
be used to predict spectra given chemical structure. While physical simulation
offers a grounded way to predict spectra, it can be difficult and computation-
ally expensive. An alternative approach leverages machine learning to predict
spectrum from structure, for a variety of types of spectra, including mass spec-
trometry (MS),158,159 nuclear magnetic resonance (NMR),160,161 and ultraviolet-
visible spectroscopy (UV-vis).162 Some frame the forward prediction problem
as formula prediction, employing either autoregressive models or a fixed vo-
cabulary of formulas163,164; while others focus on subgraph prediction, utilizing
recursive fragmentation, autoregressive generation, and deep probabilistic mod-
els,159,165,166 or incorporate 3D structural information.167,168 In the context of
mass spectra, some methods approximate the spectrum as a sequence of discrete
bins with corresponding peak intensities, reducing the problem to a task of re-
gressing the mass spectrum directly from structure.158,167 In addition to structure-
to-spectrum prediction, another approach involves predicting structure-property
relationships by estimating various molecular descriptors – ranging from scalars
(e.g., energy, partial charges) to vectors (e.g., electric dipoles, atomic forces),
and higher-order tensors (e.g., Hessian matrix, polarizability, octupole moment)
– and then using these descriptors to predict different spectra, including IR, Ra-
man, UV-Vis, and NMR.169

2.5.2 Structure elucidation. On the other side is the inverse problem of di-
rectly predicting chemical structure from a given spectrum. DENDRAL was
the first expert system for inferring chemical structure from mass spectra in
1969.170,171 Chemists also used ML to analyze infrared (IR), nuclear magnetic
resonance (NMR), and mass spectra for identifying limited sets of functional
groups.172–174 While these methods provide helpful structural insights, they are
insufficient for fully elucidating molecular structures.

Combining information of many inferred functional groups has enabled struc-
ture elucidation. For NMR data, the molecular structure can be elucidated by first
identifying molecular substructures and functional groups,175–177 which are then
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optimally assembled via beam search over possible configurations or constructed
atom-by-atom,177–179 similar to the approach chemists take when interpreting
NMR spectra. Similar “reconstruction-by-substructure” strategies have been em-
ployed to varying degrees of structural detail for IR180,181 and surface-enhanced
Raman spectroscopy (SERS).182 However, as the number of atoms increases, this
approach quickly encounters combinatorial scaling issues.

Molecular structure elucidation can also be tackled as an end-to-end problem
from a deep learning perspective. In this approach, the spectra are tokenized into
strings and SMILES strings are predicted; this can be viewed as a machine trans-
lation task. This approach has been applied to NMR, IR and tandem MS/MS
data,183–187 showing more significant promise for scaling to larger chemical sys-
tems and de novo structure elucidation. The structure prediction problem can
also be formulated as an optimization task, e.g. by formulating it as a Markov
decision process.179 If we consider scenarios where we have some prior informa-
tion about the chemical system at hand, such as chemical formula, known starting
materials and reaction conditions, implementing this information as constraints
can help the model converge on a solution more efficiently.

Moving from molecules to crystals, solving the inverse problem for X-ray
spectroscopic data such as powder X-ray diffraction (PXRD) and X-ray absorp-
tion near-edge structure (XANES) spectra also poses interesting challenges for
the machine learning community, where there are unique and underdeveloped
opportunities for employing various deep learning models for generalizable crys-
tal system and space group identification.188,189 Diffusion models have shown
particular promise, especially given their successful application to counterpart
inverse problems in text-to-image generation. In this context, we can draw paral-
lels between text and spectra and between image generation and crystal structure
prediction.190,191

In the field of rotational spectroscopy, the challenge of spectral assignment
– i.e. deduce the rotational constants from a densely packed rotational spectrum
– represents one of the earliest application of ML in this domain.192 This prob-
lem is particularly well-suited for deep learning techniques due to the dense yet
easy-to-simulate nature of the spectra. However, the rotational constants alone
do not determine the 3D structure of the molecule. The approach that we recently
introduced solves this by inferring 3D structure given incomplete information as
molecular formula, rotational constants, and unsigned atomic Cartesian coordi-
nates known as substitution coordinates.193

In the realm of structural biology, advances in protein structure prediction
have accompanied advances in cryo-electron microscopy. Reconstruction of pro-
tein structure from cryo-EM has been tackled using deep generative models.194,195

These methods have progressed to the point of reconstructing biomolecular dy-
namics from cryo-electron tomography (cryo-ET).196 Structure elucidation using
CryoEM continues to show day-to-day advances. Advances in data processing
have provided incredible gains in resolution197 that can only be improved by the
use of ML methodologies.

2.5.3 Limits and open problems. As with all data-hungry approaches, one
key issue remains universal: While simulated spectra can be obtained in large
quantities, it is crucial to consider if the model performs well on experimental
spectra, which often exhibit more significant variability and inconsistencies. A
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relevant question to consider is: Would a more concerted effort by the scientific
community to push for the deposition of raw spectral files in open data reposi-
tories help advance deep learning applications for automated spectra-to-structure
elucidation?

For inverse spectrum-to-structure elucidation, while autonomous and de novo
molecular structure determination of pure samples is indubitably essential to fa-
cilitate high-throughput reaction optimization and discovery campaigns, it is also
crucial to address structure annotation of spectra from complex mixtures, which
encompasses both the targeted identification of specific compounds of interest
and non-targeted metabolomics. Such mixtures are standard in real-life sam-
ple matrices and are essential for various fields ranging from bio-diagnostics to
forensics. Success in these tasks is highly contingent on the model’s ability to
disentangle and isolate individual molecular spectral signatures from the highly
convoluted data. Machine learning excels in handling complex, high-dimensional
data, making it well-suited for these challenging tasks.198,199 In addition, lever-
aging ML methods to integrate information from multiple spectral inputs could
further enhance structure elucidation’s accuracy and completeness.

2.6 Leveraging scale with foundational models for chemistry

With increasing computational power, machine learning models have been trained
on progressively larger datasets. At scale, ML offers qualitatively different ca-
pabilities. Foundation models are large-scale models that have been trained on a
broad spectrum of data and can be applied to a variety of downstream tasks. Sev-
eral general-purpose foundation models – such as ChatGPT, Gemini, and Llama
– are typically utilized for language and image generation; many of these are
language-only models or models trained on multiple modalities. However, using
these models in the chemical domain presents unique challenges, and so many
have trained their models from scratch on chemical data, but this is not trivial
either. In this section, we will describe the current state of foundation models in
chemistry and give our perspective on remaining open questions.

2.6.1 Transforming knowledge with large language models and agents.
Some of the earliest applications of generative models to chemistry have been
via language, which was enabled by the fact that molecules can be represented
with strings using SMILES notation.200 Preliminary chemistry language mod-
els were trained in an unsupervised manner on SMILES representations,201,202

which learned dependencies between molecular subfragments. More recently,
models have also been concurrently trained on other molecular modalities rep-
resented by text tokens, such as textual descriptions, scientific papers, synthesis
procedures, commonly with autoregressive losses to be able to generate molecule
descriptions or structures at inference time.203–207 Ramos et al. 208 wrote a com-
prehensive review detailing 80 chemistry/biochemistry language models to date
for further reading. One motivation behind incorporating textual descriptions is
that they contain information about functional properties of molecules, which
can be useful for improving the embedding representations of molecules that are
structurally similar but functionally different, or vice versa. They also enable in-
teraction with models using natural language, which is a more intuitive interface
for many users than rigid queries.209,210 Additionally, LLMs have been utilized
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for scientific bibliographic parsing,211–213 facilitating the extraction of chemical
information from existing literature and building knowledge databases. These
databases can be used for the fine-tuning of LLMs with the potential to improve
the generation and screening capabilities of self-driving labs (Sec. 2.7).209,214,215

However, there still exists a gap in using these models out-of-the-box for dis-
covery tasks or in domain-specific chemistry applications (at least to our knowl-
edge),206,216 one reason being that there is not enough data to train these models
in the same way that models like GPT-4 have been trained on web-scale text and
images.217 One way to use these chemistry-aware language models is to finetune
them on downstream tasks,218 or plug them into optimization or search frame-
works as a way to provide good prior knowledge219–222. Other works have also
begun to explore scaling of both models and data.223,224

One interesting application of chemistry-aware foundation models has been
the development of chemistry agents that can e.g. make use of tools225 necessary
for solving chemistry problems, and/or plan chemistry experiments. Some no-
table examples include ChemCrow,226 Coscientist,227 our own ORGANA,228 or
ChemReasoner.229 These agents have access to various chemistry-related tools,
such as simulators or robots to execute chemistry experiments, and use an LLM
(such as GPT-4) as a central orchestrator to decide when and how to use these
tools to accomplish a user-specified goal. One longer-term goal of such agents is
to develop scientific assistants that can help beyond calculating and executing to
do more complex reasoning and planning by generating and refining hypotheses
on their own. This has been extended to other research domains by the AI Sci-
entist, which demonstrates autonomous machine learning research by executing
experiments and writing a research paper.230

These research areas are in their infancy, so several open questions remain, in-
cluding: (1) How do we effectively evaluate chemistry-aware LLMs/agents? (2)
What are the use cases for these models in practice for chemists? Effective model
evaluation mainly depends on developing meaningful tasks, which is currently an
open problem both in terms of dataset scale and breadth. There already do exist
several benchmarks in this space,28,231 which is a good start but there is room to
improve them in terms of data quality and task objectives.32 More recent bench-
marks have been released that are closer to real-world applications,33,232,233 and
also platforms such as Polaris have made it easier for researchers to have faster
access to a wide array of datasets.234 The issue with using sub-optimal bench-
marks in this field has been exacerbated by the current climate in machine learn-
ing in that benchmarks are mainly used to show that a new method achieved
better performance than the current state-of-the-art, without human understand-
ing of why it improved. This is also an excellent opportunity for collaboration
between chemists and the ML domain expert communities.

Language-based foundation models have also been used in other applica-
tions, including knowledge graph generation235 and knowledge extraction from
chemical literature,236–239 including our own work on reaction diagram pars-
ing,240 which is a difficult task. These efforts are essential for creating structured
databases of experimental procedures, which can contribute to existing reposito-
ries such as the previously-mentioned Open Reaction Database.98

2.6.2 Foundational physical models. While language-only foundation mod-
els are receiving a lot of attention in chemistry, it has been shown that language
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might not be the sufficient modality, especially in settings where 3D geometry
matters. For example, Alampara et al. 241 showed that language models are not
enough to encode structural information needed to represent specific material
properties.

However, language models are not the only foundation models developed
in the biochemical sciences. Several models have been built to universally ap-
proximate force fields and predict structures for any molecule, material, or pro-
tein.109,242–245 Perhaps the most famous example is AlphaFold2 for protein struc-
ture prediction134 and, more recently, AlphaFold3,140 which given any set of 2D
biomolecules, predicts how they might assemble in 3D. To our knowledge, these
models still outperform any sequence-based protein prediction models for many
structural and functional tasks, especially in cases where input sequences do not
have homologues in the training data.246

Another impressive example is the recent foundation model MACE-MP-0,
built with the MACE equivariant architecture.109,247 MACE-MP-0 was trained
on 150 thousand inorganic crystals. After a small number of task-specific exam-
ples for fine-tuning, it can be used as a force field in simulations on a wide variety
of tasks, even seemingly unrelated ones such as small protein simulations. No-
tably, intermolecular interactions seem somewhat fuzzy in the MACE-MP-0. For
example, in the aforementioned protein simulation, the model was able to capture
hydrogen transfer, which is a remarkable achievement. However, the authors also
opted to include D3 dispersion borrowed from classical computational chemistry,
pointing to the fact that the model still needs some help to predict long-range
interactions. Foundational force fields have continued to scale, with industry re-
search labs training neural force fields on ever-larger data, such as GNoME244

and MatterSim.245

One key takeaway from these types of models is that structural information
should not be ignored depending on what downstream tasks the model will be
applied to, and that training models on broad, large-scale datasets (i.e., going be-
yond training a simple model on a single prediction task, which was the norm
even a couple years ago) can help generalize better to more downstream set-
tings. We suspect that scaling along multiple modalities concurrently is critical
for building the best foundation model in chemistry – namely, training models
on as many modalities as possible, such as 3D structure information, text, and
spectral information.31

2.6.3 Limits and open problems. In the case of the domain sciences, we are
not as privileged as in the domain of natural language or images, which already
has internet-scale data available. Scientific data is scarce; every data point must
be an experiment or a high-quality simulation. If simulations are employed, the
model must find a way to translate their results to specific experimental condi-
tions. We suspect that universal models across chemistry are still a decade away
and will perhaps be a moving target as humans continue to demand more of them.
This is analogous to the problem of widening highways248 where many analysts
have shown that as soon as a road is widened, the additional created demand due
to its availability makes the highway full of traffic immediately.
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2.7 Closed-loop optimization and self-driving labs

2.7.1 Self-driving laboratories. As ML applications continue to evolve,
the necessity and scarcity of high-quality data become increasingly apparent.
The advent of chemical digitization249,250 and advances in ML4,251 have laid the
groundwork for combining ML with automated data generation through robotic
experimentation. This synergy has given rise to the concept of the self-driving
laboratory (SDL).6 SDLs are primarily composed of two critical components:
automated laboratory equipment and experimental planners, both of which lever-
age ML techniques to enhance their functionality.6 The ultimate goal is to au-
tonomously execute the scientific method, encompassing hypothesis generation
(ML), hypothesis testing (experimentation), and hypothesis refinement (ML), po-
tentially allowing for the exploration of vast design spaces in a data-efficient
manner.

Significant advancements in automated laboratory equipment have been achieved
by integrating ML with computer vision,252 leading to the concept of “general
chemistry robots.”253 These ML-trained robots can make decisions based on ex-
ternal feedback, enabling the dynamic automation of chemical operations tradi-
tionally performed by human chemists.254–256 Given the inherent challenges in
training robotic equipment for active decision-making based on external feed-
back, a notable innovation in this area is the use of digital twins—virtual repli-
cas of laboratory setups—that provide a robust framework for accelerating the
training of robotic ML models.257 These digital twins simulate chemical scenar-
ios with high fidelity,258 creating a realistic feedback loop that accelerates the
model’s learning process.

On the experimental planning side, heuristic techniques259–261 are being pro-
gressively replaced by ML optimization algorithms. When combined with chem-
ical digitization,262 these optimization techniques can identify target chemicals
and optimize reaction conditions while significantly reducing the number of ex-
perimental steps required.263 Among the various ML optimization techniques,264,265

Bayesian optimization266–268 has gained particular prominence in experimental
chemistry due to its success in chemical applications.269 Machine-learning-based
surrogate models, which predict the properties of chemicals and reactions,270–272

have been instrumental in this success, with documented examples in both pro-
cess optimization and materials discovery.273

Moreover, the rise of LLMs has further enhanced the auxiliary components
of SDLs. LLMs have been effectively used to create human-machine interfaces
that bypass traditional coding,274 enabling more natural communication between
chemists and laboratory systems—a significant advantage for users who may not
be well-versed in coding or data processing.274–276

2.7.2 Limits and open problems. As discussed by us recently,277 the chal-
lenges facing SDLs can be broadly categorized into two areas: motor (hardware-
related) and cognitive (AI-related).

Motor challenges. The primary hardware challenges stem from the human-
centric design of chemical instruments and the lack of seamless interconnection
between existing automated modules. As a result, most SDLs operate semi-
automatically, requiring human intervention for tasks such as sample transfer,
maintenance, and troubleshooting. Various solutions have been proposed to ad-
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dress these issues, including deploying mobile robots for sample transfer253 and
adapting general-purpose robots to perform chemical tasks or operate instruments
originally designed for human use.278–280 However, many of these methods rely
on traditional algorithms that require static calibration, which is not well-suited
to the dynamic nature of SDLs. While computer vision coupled with AI has been
proposed as a solution, laboratory equipment, particularly glassware, continues
to present significant challenges that are continuously being addressed.281

Cognitive challenges. Cognitive challenges primarily arise from the diffi-
culty in developing models that can accurately estimate the chemical output of
the system. This limitation restricts the use of more general generative mod-
els, effectively reducing the amount of chemical space that experimental plan-
ners can explore. When combined with the aforementioned motor challenges,
another issue becomes apparent: SDLs often operate in low-data regimes. Pre-
dictive and generative machine learning models typically require large datasets to
make meaningful predictions. While generative models can be trained on exist-
ing data,219,282 deploying predictive algorithms in such low-data regimes remains
a significant challenge.

Auxiliary component challenges. Regarding the auxiliary components of
SDLs, the incorporation of LLMs shows promise in automating workflow cre-
ation275 and improving human-machine interfaces. However, further research is
needed to ensure the safety and reliability of these processes. Additionally, while
integrating bibliographic extraction into SDLs can enhance model development,
its effective integration with predictive models remains an unresolved issue.

A final challenge to be addressed in the field of SDLs is the economy of scale
of their development. The more SDLs the community builds, the easier it will be
to build the next ones. Hence, the democratization of low-cost SDLs is crucial
for the advancement of the field.283

3 Problems meet methods: a machine learning perspective on
solving chemical problems

There is already a wealth of resources on how to apply the specifics of machine
learning in several books, reviews, and internet resources.284–287 In this section,
we provide a high-level perspective of how ML researchers and communities
view and tackle problems. To start, we reclassify the diverse chemical problems
introduced above as instances of well-established ML problems. To elaborate the
ML perspective, we gather common themes and practices in the ML community
and examine them in light of application to chemistry, highlighting points to
consider related to benchmarking, the role of domain knowledge, and community
values.

3.1 The toolbox of machine learning

ML provides a toolbox of algorithms and theory for solving problems using data.
ML has formalized a set of well-defined problems to solve diverse tasks in lan-
guage, vision, audio, video, tabular data, scientific data, and other domains. Each
problem establishes a set of input requirements and a desired goal, which has
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proved helpful for empirically benchmarking and theoretically analyzing differ-
ent algorithms under a common framework. In Table 1, we lay out significant ML
problems with their expected inputs and goals and reclassify different chemical
problems as instances of these ML problems.

Regression and classification aim to predict labels y from inputs x, given
a dataset of paired data. Labels can be one-dimensional, such as in predicting
properties, energy, or yield, but also high-dimensional, such as the ML regression
problems related to force fields, spectra prediction, and segmentation. When data
is small and tabular, gradient boosting machines such as XGBoost288 often per-
form well. Gaussian processes also work with small data and provide good un-
certainties for use in Bayesian optimization.289 However, deep neural networks
are the algorithm of choice for high-dimensional, complex data like images, text,
and molecules. The choice of neural network architecture is informed by the
problem’s constraints: graph neural networks for 2D graphs and equivariant ar-
chitectures for 3D data. Relatively recently, transformers290,291 have revolution-
ized modelling of language,290 images,292 graphs,293 and 3D molecules.134,243

Generative modelling aims to draw samples x from a distribution p(x) de-
fined by a dataset {x}. Unconditional generative modelling tries to match the
data distribution. Conditional generative modelling takes a label or prompt y and
tries to learn the conditional distribution p(x|y), blurring the line between unsu-
pervised and supervised learning. While unconditional generative modelling is
rarely valuable for chemistry, conditional generative modelling is ideally suited
to inverse problems or one-to-many problems. This is the case for conformer
search (one 2D structure for many 3D conformers), structure elucidation (one sig-
nal could be consistent with multiple molecules), or forward synthesis prediction
(given reactants, many products might be possible). Generative models are a nat-
ural fit for their ability to produce multiple quality answers to a question. On the
other hand, regression will average over all the possible answers, which may not
be a quality answer itself. Whereas AlphaFold2134 used regression to predict one
3D structure given one sequence, AlphaFold3140 used diffusion models to pre-
dict multiple biomolecular assemblies for the same input structures. While many
generative model classes exist, such as variational autoencoders,294 generative
adversarial networks,295 and normalizing flows,296 the dominant ones today are
autoregressive models for language297 and diffusion/flow matching models for
perceptual data like images.298 In chemistry, this translates to chemical language
models of SMILES224 and diffusion models of 3D molecular structure.140 Both
approaches rely on gradual generation via iterative prediction by a neural net-
work, usually a transformer. Because an unconditional generative model learns
to reproduce a data distribution, which may be a large amount of plentiful unla-
beled data, training a generative model can also be thought of as compressing all
this data into the network’s weights, imbuing a notion of understanding. Tasks
such as sampling and agent behaviour can then build on this understanding.

Sampling also aims to draw samples from a distribution but is distinguished
from generative modelling because it only permits access to an energy func-
tion E(x), which defines an unnormalized probability density p(x) ∝ e−E(x). No
dataset is provided, so one cannot simply train a generative model. Furthermore,
generating a dataset in the first place would require drawing samples. In addition,
the energy function is often computationally costly to evaluate. For these reasons,
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Table 1 A toolbox of machine learning
ML problem Input Goal Chemical problems Algorithms
Regression and
classification

Paired data
{(x,y)}

predict ŷ = f (x) • Property prediction
• Neural network potentials
• Yield prediction
• Proxies for fast prediction
• Spectra prediction
• Figure segmentation
• (3D structure prediction)

• Classical machine learning:
linear regression, random forests,
support vector machines,
gradient boosting machines

• Gaussian processes
• Neural networks
• Graph neural networks
• Equivariant neural networks
• Transformers

Generative
modelling

Dataset {x},
optional
conditioning {y}

draw samples
x ∼ p(x) or
x ∼ p(x|y)

• Conformer search
• Docking
• Crystal structure prediction
• Transition state search
• Structure elucidation
• Forward synthesis prediction
• (Molecular design)

• Variational autoencoders
• Generative adversarial networks
• Normalizing flows
• Autoregressive models
• Denoising diffusion

and flow matching

Sampling energy E(x) draw samples
x ∼ p(x) ∝ e−E(x)

• Equilibrium sampling
• Transition path sampling
• Molecular design

• Markov chain Monte Carlo
• Sequential Monte Carlo
• GFlowNets

Gradient-based
optimization

loss L(θ) optimal
parameters θ∗

• Neural wavefunctions
• Physics-informed

neural networks
• Differentiable simulation
• (Molecular design)

• First-order: (stochastic)
gradient descent, Adam

• Second-order: K-FAC

Black-box
optimization

Oracle f (x) optimal x∗ • Reaction and
process optimization

• (Molecular design)

• Bayesian optimization
• Bandit optimization
• Reinforcement learning
• Genetic algorithms

Agents Environment
of states {s},
actions {a},
transitions,
and reward R(s)

draw actions
from optimal
policy a ∼ π∗(s)

• Extracting literature data
• Executing simulations
• Question answering
• Synthesis planning

• LLM prompting frameworks
• Reinforcement learning

sampling problems are among the most difficult in ML and computational chem-
istry. Numerous sampling algorithms exist in the literature, with many originat-
ing from statistical mechanics, such as Markov chain Monte Carlo (MCMC)299

and Langevin dynamics.300 These traditional methods are beginning to incor-
porate ideas from modern machine learning, such as drawing inspiration from
diffusion models for MCMC,301 or incorporating learnable components into se-
quential Monte Carlo.302 Some methods learn a bias potential to do transition
path sampling,154 while other methods turn diffusion models into samplers which
can solve combinatorial optimization problems.303 Sampling methods are key to
solving equilibrium sampling problems, which are necessary for predicting the
thermodynamics and kinetics of many chemical processes. Generative models
can be used as components of sampling algorithms,304 such as in Boltzmann gen-
erators,141,144 which train both by energy and by example. Boltzmann generators
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have also begun to leverage generative models, transferring learning between dif-
ferent examples.143 Generative Flow Networks305 (GFlowNets) solve this sam-
pling problem by learning to distribute flow in a generative graph, with a unique
strength for generating diverse, discrete data. Indeed, a growing body of literature
has applied GFlowNets to molecular and materials design problems.61,306–308

Gradient-based optimization seeks to optimize a smooth loss function L
with respect to parameters θ, which is used to train the neural networks used
to solve nearly all of the other ML problems. To do so, machine learning has
developed a suite of optimization algorithms such as (stochastic) gradient de-
scent, Adam,309 and second-order methods such as K-FAC310 which use second-
derivative information. Machine learning frameworks such as PyTorch,311 JAX,312

and Tensorflow313 have implemented automatic differentiation with GPU accel-
eration, making it easier to optimize neural networks. The fact that neural net-
works can be optimized so well has motivated the use of neural networks as
ansätze for finding wavefunctions to satisfy the Schrödinger equation.113 This
approach, in turn, is an instance of a physics-informed neural network (PINN),314

which seeks neural network solutions to PDEs by using the PDE itself as a loss
function. Automatic differentiation also enables propagating derivatives through
simulation, which can learn potentials for pairwise interaction,315 bias potentials
for transition path sampling,153 and perform inverse design.316

Black-box optimization methods try to optimize an oracle function f (x) in
a derivative-free manner with as few oracle calls as possible. This is the case in
many experimental problems such as optimizing reaction parameters for yield,269

device processing parameters for performance,317 or liquid handling parame-
ters.318 To solve these problems with high sample efficiency, algorithms like
Bayesian optimization and bandit optimization are applied. When sample effi-
ciency is not a concern, families of algorithms such as reinforcement learning
and metaheuristic optimization like genetic algorithms can also be applied.319

Black-box optimization can also be treated as an instance of sampling, where the
target distribution is concentrated around the global optimum.

Agents solve complex multistep problems within an environment. An en-
vironment defines possible states s, actions a, transitions between states, and
a reward function R(s). For example, retrosynthesis planning75 has molecules
as states, chemical reactions as actions, and yield and cost as reward functions.
Planning problems such as retrosynthesis planning or robotic motion planning320

are naturally solved by agent behaviour, and standard algorithms to learn optimal
agent behaviour are known as reinforcement learning. Because reinforcement
learning has poor sample efficiency, a common approach is to initialize agents
from generative models: Helpful assistants such as ChatGPT were initialized as
large language models pretrained on internet-scale text, followed by finetuning to
maximize a reward of satisfying human preferences.321 Prompting frameworks
are a rapidly emerging set of methods for augmenting these agents’ capabilities,
allowing them to reason step-by-step,322 use tools,225 retrieve information,323

and execute code,324 and to continually repeat these steps.325

3.1.1 The benefits of a toolbox. A shared problem interface enables clear
and broad benchmarking of many different algorithms. One example can be seen
in Table 1 of Song et al.,326 who propose a new class of generative models and
extensively compares their method to 27 different generative models of different
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classes on the same dataset and benchmark.
Each of these ML problems also has its own theoretical foundations. Math-

ematical theory can analyze algorithms for proofs of convergence or properties
when converged, providing explanations of why certain methods work better than
others. The shared problem interface also allows analysis to determine when one
method is the same as another or which methods are more general than others,
which helps unify a diverse literature.

3.1.2 Tools can be stacked on top of each other. ML problems are also in-
tertwined with each other. Generative models, like diffusion models, use neural
networks trained to regress denoising steps. Agents are built on top of generative
text models, while the core of the generative model itself is a neural network pre-
dicting the next token. All these networks are trained using stochastic optimiza-
tion methods like Adam, while black-box optimization is used to choose network
hyperparameters. Sampling algorithms, black-box optimization, and agents can
also incorporate generative models trained on previous data, improving the data
generation quality.

The problems enumerated in Table 1 are not an exhaustive list. Other prob-
lems include uncertainty quantification, which is helpful in Bayesian optimiza-
tion327 and active learning,328 federated learning for combining industrial phar-
maceutical data while preserving privacy,329 representation learning for gener-
ally applicable molecular descriptors,330 causal learning, retrieval, and compres-
sion.

3.1.3 Picking the right tool for the job. While the tools of ML are pow-
erful, they provide the most mileage when used for the right job. For example,
as mentioned previously, generative modelling is more naturally suited for one-
to-many problems such as 3D structure prediction. Gradient-based optimization
is applicable when the loss function is differentiable and fast to evaluate, such
as for optimizing neural networks, but not necessarily for optimizing molecular
structure. While molecular design is often viewed as a black-box optimization
problem, it can be argued that sampling is the proper framework for molecular
design: Discovery as a multiobjective problem seeks many diverse but quality
hits, whereas black-box optimization tends to locally focus on the best solution
seen so far.331 Molecular design cannot be solved by generative modelling alone
because generative models learn the distribution of a given dataset. In contrast,
molecular design seeks exceptional candidates outside the known data distribu-
tion.

In chemistry, there is a tendency to treat problems as a search, like finding
a needle in a haystack. Traditional docking approaches search for all feasible
ligand positions, while crystal structure prediction exhaustively searches for all
atom arrangements. Molecular design by virtual screening assumes there will
be sufficiently good needles in a haystack of large virtual libraries. A search-
based perspective is useful when available resources are sufficient to exhaustively
model a space, which may be necessary to show that no good solutions exist.
However, for many applications, an exhaustive search is overkill. Imagine trying
to write an essay by searching over the space of all possible English texts. A
helpful exercise is to ask whether a search problem has the data and algorithms
available to be reframed as a generative modelling or sampling problem.
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3.2 Themes and practices in the ML community

Solving chemical problems can be aided by both high-level perspectives and
community practices. To contextualize ML perspectives on algorithm develop-
ment, we describe common themes and practices in the ML community, such as
benchmarking, extreme interdisciplinarity, and the bitter lesson of deep learning.
All of these are expanded below.

3.2.1 The role of benchmarking. Benchmarking plays a crucial role in
the ML development process, driving the continuous improvement of models
and methods. The ML community highly values methods that improve on the
state of the art. With at least three major computer science conferences annu-
ally (NeurIPS, ICML, and ICLR), incremental advances are frequent. These mi-
nor, iterative improvements on established benchmarks often accumulate to gain
significant performance gains over time. For researchers, benchmarks provide a
clear metric for assessing which components of a model most affect performance,
enabling more focused and impactful developments.

A prominent feature of ML research is the use of leaderboards, where pro-
posed methods are ranked based on their performance against established bench-
marks. Papers must either advance or be competitive with the state of the art
to be accepted at major conferences. This process has driven notable progress
in various domains, from image classification332 and machine translation333 to
image generation,334 and even solving Olympiad math problems.335 Leveraging
this mechanism, the Open Catalyst Project108,336,337 set a benchmark for neural
network potentials to relax organic adsorbates on metal surfaces. This project
provided a dataset much larger than encountered before, which motivated the
continual development of more powerful equivariant architectures. From 2020
to 2023, the success rate of predicting adsorption energy grew from 1% to 14%,
with current models now becoming useful in predicting adsorption.338,339 An-
other benchmark called Matbench Discovery340 has initiated an arms race of
neural force fields on the industry level.

However, while benchmarking is a powerful tool, it is essential to be crit-
ical of its applicability to chemistry. Domain experts are uniquely positioned
to define practical benchmarks that can translate to real-world outcomes in the
lab.33,55 Too often, ML literature presents problem settings that, while optimized
for computational performance, may be unrealistic for experimental validation.
This misalignment can lead to a scenario where the focus shifts from solving
the actual problem to merely advancing ML techniques. As methods mature and
benchmarks become saturated, new, more relevant benchmarks must arise.

Ultimately, defining and framing problems for ML researchers is a critical
task. It involves proposing important questions and calls to action in a way that
is accessible to the broader ML community. By doing so, chemists can guide
the development of ML tools more likely to have practical applications in exper-
imental research. While creating datasets and benchmarks can be seen as rote
work, it can spur progress on difficult problems by leveraging community ef-
forts of the ML community. Suppose a chemical problem can be crystallized and
packaged into a clearly and appropriately benchmarked ML problem. Chemists
can now wonder: What new problems now become possible to solve, if these old
tasks can be solved with significantly greater speed or accuracy? There are many
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more scientific questions in the vast set of exciting areas to work in chemistry
and materials.

3.2.2 Interdisciplinary: the effect of chemistry on ML. Whereas bench-
marking iterative improvements is a mainstay of methods-driven ML in the com-
puter science community, an alternative approach to innovation leverages the ex-
treme interdisciplinarity of the ML community. ML has been applied in fields
as diverse as health, agriculture, climate, conservation, physics, and astronomy.
We recently suggested application-driven ML341 as an emerging paradigm that
evaluates success based on real-world tasks in diverse areas, with methods and
evaluations informed and contextualized by domain knowledge. Application-
driven innovation acknowledges the impact of incorporating tasks from these
diverse areas on the development of machine learning. New tasks motivate new
algorithms.

For chemistry, the development of graph neural networks was driven by the
need to model molecular graphs.23,342 This led to practical advances in modelling
other graph data like social networks, citation networks, computer programs, and
databases. Graph machine learning in turn made theoretical advances, partic-
ularly in analyzing the expressivity of GNNs through the Weisfeiler-Lehman
test.343,344 In addition, the need for neural networks to respect rotational sym-
metries of 3D space motivated the development of equivariant architectures.345

All these methodological developments in respecting symmetries have been uni-
fied with a theory of geometric deep learning,346 which shows how convolutional
neural networks, graph neural networks, and transformers are actually tightly re-
lated.

Beyond theory and methods, ML researchers are also excited for the potential
of ML to help tackle real-world problems like global health and climate change.
This has manifested as a great eagerness to learn, as evidenced by the prolifer-
ation of blog posts,347 teaching material,287 and online reading group commu-
nities with recorded talks.348 Several workshops which focus on ML applica-
tions to chemistry are offered at main ML conferences such as NeurIPS,349–351

ICML,352,353 and ICLR.354,355 This wide availability of resources also reflects
the value of openness in the ML community. Conference papers are published
freely, preprints are emphasized, and sharing code is expected. Conferences even
have a track for accepting blog posts.356

When speaking to ML researchers, be patient with their initial assumptions.
Often, several assumptions are made in the ML literature, which ultimately pan
out to lose applicability when applied to actual experiments. This occurs in
molecular design neglecting the synthesizability of molecules,58 or in reaction
prediction neglecting the reaction conditions.357 This reflects the different values
and assumptions reviewers make in a distinct field. It is easy to view this and dis-
miss those approaches as naı̈ve, and it is good to make these criticisms. But let
us not throw the baby out with the bathwater: We should ask, if these additional
assumptions were taken care of, could this approach help solve our problem? As
ML practitioners come from different backgrounds, they will not immediately
understand jargon assumptions and experimental setups in chemistry. But they
are eager to learn.
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3.2.3 The bitter lesson: Balancing scalability with domain knowledge.
The advent of AlexNet358 marked the beginning of the deep learning revolu-
tion, showcasing how neural networks, when trained using the computational
power of GPUs, could classify images with much better accuracy than models
based on hand-designed features. The power of computational scale was made
explicit with the observation of neural scaling laws,359 which empirically but
reliably predict how model performance improves as compute, data, and param-
eter counts increase. These scaling laws motivated the GPT series of language
models,217,297,360 which ultimately led to advanced applications like ChatGPT.

In light of scaling laws, we should be careful when imposing our domain
knowledge when designing algorithms. The “bitter lesson” in ML cautions against
relying too heavily on domain knowledge when designing algorithms.361 While
hand-crafted, domain-specific design choices can offer short-term improvements,
approaches that better leverage computational scale often outperform them in the
long run. Across domains like text, images, speech, chess, and Go, approaches
which rely on human intuition and inductive bias have been replaced by “brute-
force” approaches that can take advantage of exponential increases in computing
power provided by Moore’s law.

As chemists, it is joyful to develop methods that are informed by our chem-
ical knowledge, such as by injecting quantum chemistry descriptors into regres-
sion,362 or by imposing physical constraints on the system. However, we should
remind ourselves that our human understanding of a problem does not directly
translate into being able to design algorithms that solve this problem. Despite
extensive knowledge of linguistics in ML research, models like ChatGPT were
not realized until researchers trained on massive datasets.

The power of scale can be fearful. Even beloved assumptions like enforcing
equivariance in neural networks have been challenged by recent work: Meth-
ods like probabilistic symmetrization363 and stochastic frame averaging364 have
shown that imposing architectural constraints is not strictly necessary, while
models like AlphaFold3140 and Molecular Conformer Fields127 have demon-
strated that shown that models trained with randomly rotated training examples
can automatically learn rotation equivariance, but at the cost of higher computa-
tion and longer training time.

At the same time, the present-day has limited scale and data. For example,
expert systems with reaction rules are still the most effective approach for synthe-
sis planning today,90 perhaps owing to the difficulty of gathering reaction data.
In addition, one can discard even more inductive bias and train language models
to generate 3D molecular structure directly as .xyz files, as we did recently,365

and it can compare favourably with more hand-tailored methods for crystal struc-
ture prediction.366 Yet, as Alampara et al. 241 showed, current language models
cannot encode geometric information needed to represent specific material prop-
erties.

Therefore, the bitter lesson does not mean that imposing inductive bias on al-
gorithms is never good. An optimal balance must be chosen between leveraging
computational power and domain expertise. This is especially critical in chem-
istry: Unlike domains like language and images, which are available at internet-
scale, chemical data is scarce and costs real-world experiments to obtain. It is
crucial to design algorithms which use this limited data most efficiently. Hand-
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designed algorithms can enable better predictions and faster simulations in the
near-term, which can bootstrap data generation towards ultimately reaching the
scale of data required for foundation models.

Another critical role of domain knowledge is determining the appropriate
concept of a problem. Should we model it from first principles, like physics-
based simulations, or treat it as a cheminformatics problem? How does this prob-
lem fit into the broader context of the world? For example, predicting a drug’s
effect on a patient could be approached by simulating the entire person, which
is currently impractical, or by modelling the effects statistically or causally. At
some point, these different levels of models need to align, and domain scientists
are crucial in mapping out this structured hierarchy of models. They help deter-
mine when assumptions are reasonable and when they are not. While ML tools
cannot solve these problems independently, they can significantly aid in integrat-
ing different model components.

4 How to tackle scientific problems?

Armed with the above toolbox and perspectives, we then make recommendations
on how to choose impactful problems in ML for chemistry and introduce a high-
level structure of how ML problems are tackled. We finally outline three areas
for growth for research in ML for chemistry: breadth, depth, and scale.

4.1 The Aspuru-Guzik/Whitesides rules for selecting important problems

When one of us (Aspuru-Guzik) started the Matter Lab then at Harvard Univer-
sity (2006-2018) and now at the University of Toronto (2018-), a set of rules
for selecting significant problems began to emerge from intuition. In a hallway
conversation with George Whitesides, who told Aspuru-Guzik he had similar
guidelines, the three questions to ask before starting any research crystallized.
We apply them at the Matter Lab daily to select problems. Here, we specialize in
ML in Chemistry, but these are widely applicable. The three questions emphasize
novelty, importance, and feasibility in that order.

4.1.1 Question 1: Has this problem been solved before? Before starting
a scientific endeavour, ask yourself this question. Of course, if it has not been
solved before, your solution will be more impactful and lasting. Aim to be first
and not best.

In the context of ML, improving on benchmarks, despite providing valuable
signals of progress, is not the end goal of research. This is particularly true in
academic work, where research is not directly linked to profits and should be as
novel as possible. Once new problems are established, the field will be opened to
improve the results afterwards.

Will this work create a new connection between two areas? When a paper
introduces more questions than answers, the field grows. Simply applying an
ML method to a new field can be novel. But novelty can be maximized if the
proposed approach offers a new perspective, such as reframing a search problem
as a generative modelling problem.

For example, we introduced 3D generative modelling to the field of rotational
spectroscopy,193 which has opened the question of 3D structure elucidation from
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rotational spectroscopy alone. This is a clear example where first beats any other
research. There were no previous ML baselines to compare or benchmark our
method to, because we introduced the first approach in the field!

4.1.2 Question 2: Is what you set out to solve relevant to society? Before
starting a scientific quest, consider whether it will help others widely. We, after
all, operate in a domain of science that directly impacts human life. Humans
and the entire biome interact with human-made chemicals every day. Think of
problems that matter to the planet. Arguably, in the twenty-first century, which is
riddled with environmental and political crises, this is quite relevant.367

Which audience will care? What new tasks become within reach if this task
is solved with significantly greater accuracy or speed? For example, neural net-
work potentials are significant because force fields are used in a large number of
computational chemistry methods, which in turn predict properties and spectra.
Solving this problem, therefore, touches a large audience.

Can the proposed method be tested experimentally if it solves a computa-
tional problem? Approaches that can be experimentally validated have a much
higher impact ceiling.40,137 On the other hand, what is the worst-case scenario if
the proposed approach “doesn’t work”? If novelty is chosen carefully, this risk is
mitigated because a method which solves an unbenchmarked problem is already
state-of-the-art.

4.1.3 Question 3: Is it remotely possible to attack this problem? Tack-
ling something that is powerful, yet within the reach of your resources is key to
success. The most effective and general publications will obviously have more
impact. Therefore, aim for difficult and not low-hanging fruit work if what you
wish is for your work to be remembered.

In the context of ML, it would be useful to consider the following questions:
What are the available resources? Is enough data available for the desired gen-
eralization performance? Are there public code implementations? Have similar
problems been solved using the same framing? For example, the success of 3D
generative models in structure prediction on tasks such as conformer search and
docking indicated that they can likely be successful in crystal structure prediction
as well.

A crucial part of feasibility is controlling scope. What is the minimal imple-
mentation of an algorithm that can solve this problem, yet have a broad impact?
How can success be evaluated within this problem scope?

4.2 The structure of data science and ML problems

Machine learning and many data science problems have a general structure, as
seen in many papers. Once you begin on a chosen problem, the next consider-
ations follow this hierarchy: (1) data, (2) problem framing, (3) method, and (4)
evaluation. In our research group, we always think of these in order and in
ranking. For example, without data a scientist will not be able to make progress.
A publication that suggests a new method for old data will be less impactful than
the publication that provided the data (and its ML application) in the first place.

4.2.1 What data are available? In machine learning, everything begins
from the available data. No method can be applied without it. What is the size
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of the available data? How easy is it to simulate new data? What ground truth
data are available, and what methods are available for validating a model’s pre-
dictions? Anecdotally, when a dataset exceeds around 10,000 examples, gener-
ative models are more likely to generalize effectively. Problems that are repeat-
edly solved in the community should be considered. Can these data be routinely
recorded? For instance, tasks like computing forces and conformer searches are
standard in quantum chemistry, and the availability of this data has contributed to
the success of neural force fields and 3D structure prediction. Additionally, data
might not just be a static dataset but could include on-the-fly data acquisition,
such as environments for agents or oracle functions for black-box optimization.
It is because data is the ultimate resource that our group embarked on the multi-
year goal of developing and employing self-driving labs. We can eat our own dog
food.

4.2.2 What is a useful framing of the problem? The next critical task is to
frame the problem usefully. Framing is important not only to ensure selection of
the right tools in Table 1, but also allows for benchmarking and theoretical anal-
ysis. Problem framing should be informed by domain knowledge: What specific
challenges must be addressed to enable downstream tasks, such as experimen-
tal validation? For example, performing materials design by generating crystal
structures as 3D unit cells may be difficult to translate into real materials, since
experimentalists do not have atomistic control of structure. Framing by itself can
often determine the novelty and significance of the proposed research: Creating
a new connection between a chemical problem and a ML problem generates nov-
elty, and the potential step-function improvement in performance can improve
significance.

Another way to approach problem framing is by asking how the data will be
represented. Choosing a compact, information-rich, efficient-to-compute repre-
sentation is a simple way to incorporate inductive bias and accelerate learning.
However, as the bitter lesson shows, it is not essential to spend too much time
on designing the “perfect” representation. Deep learning can automatically find
ideal representations if the input representation contains all the necessary infor-
mation and is available in large enough quantities.

4.2.3 What model solves this problem? Once the problem is framed, the
choice of model often becomes apparent and justified. What ML methods per-
form well for this task? Can simple methods solve this problem? Established
methods, such as Morgan fingerprints and XGBoost, remain strong baselines for
property prediction,289 while genetic algorithms are strong baselines for molec-
ular generation.319 If simple methods fail, are there new classes of algorithms
suited for this problem? Is there existing code available online? It may be easier
to first run the code before trying to understand the code. How can a code imple-
mentation for solving another problem be modified as minimally as possible to
solve the problem at hand? Choose algorithms commensurate with the size and
availability of data. With small datasets, classical machine learning still performs
best.

This is perhaps the most critical paragraph of this publication: Golden advice
to graduate students and postdocs, do not fall in love with the mermaids of new
methodology. If older but proven methodology does the job, just use it! Focus
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on the scientific contributions of your work. New methods should be developed
when others truly have limitations. In other words, your new fancy super-duper
autoencoder will not be as impactful in the long term as if you solve an essential
chemistry or materials science question with an answer that lasts for ages.

4.2.4 How will the proposed method be evaluated? Finally, the method
must be evaluated according to reasonable metrics as informed by domain knowl-
edge. Do the metrics reflect the practical realities of downstream use cases of
the proposed method? For example, if you are generating and proposing new
molecules, is it feasible for a chemist to synthesize them and test their proper-
ties? Deciding appropriate metrics is vital because future work will likely adopt
the same evaluation criteria.

4.3 New problems: demanding impact from ML for chemistry

Applying ML to chemistry can have a greater impact in terms of breadth of ap-
plication, depth of consideration, and scale of execution. In breadth, many more
chemical problems can be formulated as ML problems and introduced to the ML
community. In depth, proposed methods can make stronger theoretical connec-
tions between both machine learning and computational chemistry, motivating
further method development in each field. Finally, at scale, ML for chemistry
can aim at more significant problems requiring more data. As concerns mount
about reaching the limits of internet-scale data in language and vision, chemistry
stands out as a situation where more data can be “purchased” through computa-
tional simulation or high-throughput experimentation.

4.3.1 Solving problems in breadth. While in Sec 2 we have witnessed the
diversity of chemical problems that ML has been applied to, many areas of chem-
istry remain underexplored. In no particular order, we list a number of chemistry
fields in which ML is still emerging: photochemistry,368,369 chemical educa-
tion,370 nuclear chemistry,371 agrochemistry,372 analytical chemistry,373 elec-
trochemistry,374 astrochemistry,375 amorphous materials,376 soft materials,377

open quantum systems,378 environmental chemistry,379 and atmospheric chem-
istry,380 just to cite a few. Within each field lie a number of tasks that could be
formulated as ML problems, depending on the data available. Tasks can also go
beyond the idealization of pure, small organic molecules. Heterogeneous ma-
terials, quantum materials, and complex mixtures present challenges that could
particularly benefit from ML innovations. As mentioned in Sec. 2.5, most sub-
stances in real-world situations are complex mixtures.

The key is not to “force” ML into these areas but to consider whether exist-
ing or novel tasks could be framed as ML problems listed in Table 1, facilitating
iterative improvements and potentially leading to new algorithms. In some situa-
tions, there is just not enough data to apply ML, but it remains that a simple way
to guarantee novelty is to consider an underexplored field.

Coming back to our previous example, we are pretty happy to have applied
ML to solve an essential structural determination in rotational spectroscopy: the
first application of generative models to predict the 3D structure of molecules
given their substitution coordinates.193 This is an example of a typical in-breadth
approach seeking multidisciplinary approaches and leaving our own comfort zone.
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4.3.2 Solving problems in depth. As we saw when discussing application-
driven innovation in ML in Sec. 3.2.2, chemical problems have motivated new
algorithms and advanced ML theory. Deep engagement with ML theory or the-
oretical chemistry generates novelty and significance and often leads to more
robust empirical results.

Many ML methods such as graph neural networks and equivariant architec-
tures were motivated or inspired by theoretical chemistry, and they are beginning
to return to the favor. Diffusion models were proposed in 2015, inspired by
methods in statistical mechanics,381 and have since become state-of-the-art gen-
erative models enabling high-resolution text-to-image generation.382–384 Nearly
a decade later, new works have connected diffusion models to traditional tools
in computational chemistry. Diffusion models can simultaneously learn both
coarse-grained force fields and a generative model,149 and can also be leveraged
as a means for sampling and computing free energies.385 These works would not
have been possible without deeper consideration of how diffusion models relate
to free energy, or of the connection between diffused distributions and the ideal
gas.

Furthermore, flow matching approaches derived from diffusion models relax
the constraint of noising a data distribution to a pure Gaussian distribution and
can instead connect two different distributions. This has enabled learning of
trajectories,117,386 which is beginning to be applied for transition path sampling
of reactions.387 These works create theoretical connections that may enable more
techniques to transfer from computational chemistry to machine learning and
vice versa.

In addition, whereas neural network potentials treat energy computation as a
black-box function to be memorized, Hamiltonian prediction111 opens the box
of Hartree-Fock theory, enabling access to the wavefunction, as well as a new
tradeoff between accuracy and speed. Self-consistency training112 engages with
this theory by removing the requirement of providing Hamiltonian matrices as
labels, which has improved the speed of DFT overall.

Aiming for a concrete design goal in collaboration with experimentalists also
provides much-needed depth. Real-world problems often require the integration
of ML with experimental data, and such collaborations can lead to breakthroughs
that would not be possible in isolation. Large-scale collaborations between ex-
perts in quantum chemistry, machine learning, and organic materials chemistry
enabled the discovery of new OLEDs.43 In that work, we were among the first
to demonstrate that fingerprint-based ML methods, intelligent screening method-
ologies, and experimental verification could lead to novel materials in a closed-
loop philosophy.

Our group, more recently, spent five years in an international collaboration
involving six research groups, which led to a delocalized, asynchronous closed-
loop design that led to the best organic laser material to date (to our knowl-
edge).273 In parallel, another multidisciplinary collaboration on closed-loop de-
sign388 demonstrated that ML can teach us new chemical principles from these
in-depth materials science explorations.

4.3.3 Solving problems at scale. The unreasonable effectiveness of scale,
as shown by the bitter lesson (Sec. 3.2.3), provides optimism for solving much
more difficult problems. Notorious problems like protein structure prediction
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were finally cracked by leveraging the scale of the Protein Data Bank.134,389

Fast and quantum mechanically accurate atomic dynamics are being enabled by
foundation force fields.109,244,245

For chemical problems which are already formalized in ML, progress can be
accelerated just by increasing the scale of data and compute of these approaches.
Projects like the Open Catalyst Project demonstrate the potential of ML to drive
large-scale advancements in chemistry. By purchasing new data through com-
putation and simulation and by designing better sampling algorithms, we can
improve the rate of data generation, and take aim at scale. LLM agents, for ex-
ample, could execute computational simulations to generate new training data,
further accelerating research.

While training foundation models is often cited as a source of significant
emissions, we should also be aware of the potential for compute to reduce emis-
sions.390 Better models could reduce the number of wet-lab experiments needed,
or help design greener alternatives to current and future chemical processes, ob-
serving that the chemical industry makes up a large chunk of global emissions.

Chemical space may be small. The often-cited estimated size of chemical
space as 1060 fascinates us. But from a machine learning perspective, this space
may be considered small. If we only consider black-and-white 28x28 images,
the domain of the standard MNIST dataset of handwritten digits,391 this already
has a size of 228×28 ≈ 10236. Of course, the space of images is far sparser, given
that the number of colour images in existence is 14.3 trillion ≈ 1013 images.392

This is what makes deep learning impressive – its ability to find structure within
enormously high-dimensional spaces, just from showing a bunch of examples. In
the context of language, 1060 is just the number of 10-word sentences restricted
to a vocabulary of 60 words, or the number of 10-sentence paragraphs restricted
to 60 possible sentences. Natural language is evidently much larger.

Could these powerful capabilities be enough to turn theoretical musings into
reality? Imagine being able to atomistically simulate a cell on a macroscopic
timescale, or to accurately model the effectiveness and stability of soft organic
devices over years of use, or to discover new reactions ab initio. These are
challenges that, until recently, seemed impossibly far beyond reach. We are im-
pressed that nanosecond simulation of an all-atom HIV capsid at DFT accuracy
is possible with neural force fields.393 If modern image generative models can
generate high-quality images at 1024x1024 resolution and higher,394 then what
really stands in the way of simulating an entire cell at biological timescales? If
it is data, we are fortunate to have access to more and more complex simulations
and self-driving labs which can generate high-quality data independently. If the
barrier is computing power, we are lucky enough to utilize the massive increases
in computing power driven by mainstream AI. If it is methods or experiments,
then here is the call for action to all of us, multidisciplinary theoretical chemists
of the twenty-first century: Let’s transform our discipline together!
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46 R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-

Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams and A. Aspuru-
Guzik, ACS central science, 2018, 4, 268–276.

47 M. H. Segler, T. Kogej, C. Tyrchan and M. P. Waller, ACS central science, 2018, 4, 120–131.
48 B. Sanchez-Lengeling, C. Outeiral, G. L. Guimaraes and A. Aspuru-Guzik, 2017.
49 M. Olivecrona, T. Blaschke, O. Engkvist and H. Chen, Journal of cheminformatics, 2017, 9,

1–14.
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86 F. Strieth-Kalthoff, F. Sandfort, M. Kühnemund, F. R. Schäfer, H. Kuchen and F. Glorius, Ange-

wandte Chemie International Edition, 2022, 61, e202204647.
87 C. J. Taylor, A. Pomberger, K. C. Felton, R. Grainger, M. Barecka, T. W. Chamberlain, R. A.

Bourne, C. N. Johnson and A. A. Lapkin, Chemical Reviews, 2023, 123, 3089–3126.
88 N. H. Angello, V. Rathore, W. Beker, A. Wołos, E. R. Jira, R. Roszak, T. C. Wu, C. M. Schroeder,

A. Aspuru-Guzik, B. A. Grzybowski and M. D. Burke, Science, 2022, 378, 399–405.
89 J. Y. Wang, J. M. Stevens, S. K. Kariofillis, M.-J. Tom, D. L. Golden, J. Li, J. E. Tabora,

M. Parasram, B. J. Shields, D. N. Primer, B. Hao, D. Del Valle, S. DiSomma, A. Furman, G. G.
Zipp, S. Melnikov, J. Paulson and A. G. Doyle, Nature, 2024, 626, 1025–1033.
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114 J. Hermann, Z. Schätzle and F. Noé, Nature Chemistry, 2020, 12, 891–897.
115 I. von Glehn, J. S. Spencer and D. Pfau, The Eleventh International Conference on Learning

Representations, 2023.
116 R. Li, H. Ye, D. Jiang, X. Wen, C. Wang, Z. Li, X. Li, D. He, J. Chen, W. Ren et al., arXiv

preprint arXiv:2307.08214, 2023.
117 K. Neklyudov, J. Nys, L. Thiede, J. Carrasquilla, Q. Liu, M. Welling and A. Makhzani, Advances

in Neural Information Processing Systems, 2024, 36, year.
118 D. Pfau, S. Axelrod, H. Sutterud, I. von Glehn and J. S. Spencer, Science, 2024, 385, eadn0137.
119 A. Fabrizio, A. Grisafi, B. Meyer, M. Ceriotti and C. Corminboeuf, Chemical science, 2019, 10,

9424–9432.
120 S. Gong, T. Xie, T. Zhu, S. Wang, E. R. Fadel, Y. Li and J. C. Grossman, Physical Review B,

2019, 100, 184103.
121 X. Fu, A. Rosen, K. Bystrom, R. Wang, A. Musaelian, B. Kozinsky, T. Smidt and T. Jaakkola,

arXiv preprint arXiv:2405.19276, 2024.
122 J. Kirkpatrick, B. McMorrow, D. H. Turban, A. L. Gaunt, J. S. Spencer, A. G. Matthews,

36 | 1–45

Page 36 of 46Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
9 

20
24

. D
ow

nl
oa

de
d 

on
 2

02
4-

09
-2

1 
 3

:4
7:

13
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online

DOI: 10.1039/D4FD00153B

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00153b


A. Obika, L. Thiry, M. Fortunato, D. Pfau et al., Science, 2021, 374, 1385–1389.
123 E. Hoogeboom, V. G. Satorras, C. Vignac and M. Welling, International conference on machine

learning, 2022, pp. 8867–8887.
124 M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon and J. Tang, arXiv preprint arXiv:2203.02923, 2022.
125 O. Ganea, L. Pattanaik, C. Coley, R. Barzilay, K. Jensen, W. Green and T. Jaakkola, Advances

in Neural Information Processing Systems, 2021, 34, 13757–13769.
126 B. Jing, G. Corso, J. Chang, R. Barzilay and T. Jaakkola, Advances in Neural Information

Processing Systems, 2022, 35, 24240–24253.
127 Y. Wang, A. A. Elhag, N. Jaitly, J. M. Susskind and M. Á. Bautista, Forty-first International
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176 T. Specht, J. Arweiler, J. Stüber, K. Münnemann, H. Hasse and F. Jirasek, Magnetic Resonance

in Chemistry, 2024, 62, 286–297.
177 Z. Huang, M. S. Chen, C. P. Woroch, T. E. Markland and M. W. Kanan, Chemical Science,

2021, 12, 15329–15338.
178 B. Sridharan, S. Mehta, Y. Pathak and U. D. Priyakumar, The Journal of Physical Chemistry

Letters, 2022, 13, 4924–4933.
179 S. Devata, B. Sridharan, S. Mehta, Y. Pathak, S. Laghuvarapu, G. Varma and U. D. Priyakumar,

Digital Discovery, 2024, 3, 818–829.
180 A. A. Enders, N. M. North, C. M. Fensore, J. Velez-Alvarez and H. C. Allen, Analytical Chem-

istry, 2021, 93, 9711–9718.
181 G. Jung, S. G. Jung and J. M. Cole, Chem. Sci., 2023, 14, 3600–3609.
182 E. X. Tan, S. X. Leong, W. A. Liew, I. Y. Phang, J. Y. Ng, N. S. Tan, Y. H. Lee and X. Y. Ling,

Nature Communications, 2024, 15, 2582.
183 M. Alberts, F. Zipoli and A. C. Vaucher, ChemRxiv preprint, 2023.

38 | 1–45

Page 38 of 46Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
9 

20
24

. D
ow

nl
oa

de
d 

on
 2

02
4-

09
-2

1 
 3

:4
7:

13
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online

DOI: 10.1039/D4FD00153B

https://arxiv.org/abs/2405.19386
https://arxiv.org/abs/2303.06470
https://arxiv.org/abs/2301.11419
https://arxiv.org/abs/2301.11419
https://arxiv.org/abs/2304.13136
https://arxiv.org/abs/2405.05737
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00153b


184 M. Alberts, T. Laino and A. C. Vaucher, ChemRxiv preprint, 2023.
185 F. Hu, M. S. Chen, G. M. Rotskoff, M. W. Kanan and T. E. Markland, arXiv preprint

arXiv:2408.08284, 2024.
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236 A. M. Bran, Z. Jončev and P. Schwaller, Proceedings of the 1st Workshop on Language+

Molecules (L+ M 2024), 2024, pp. 74–84.
237 Q. Ai, F. Meng, J. Shi, B. G. Pelkie and C. W. Coley, Digital Discovery, 2024.
238 Z. Zheng, O. Zhang, C. Borgs, J. T. Chayes and O. M. Yaghi, Journal of the American Chemical

Society, 2023, 145, 18048–18062.
239 M. Schilling-Wilhelmi, M. Rı́os-Garcı́a, S. Shabih, M. V. Gil, S. Miret, C. T. Koch, J. A.

Márquez and K. M. Jablonka, arXiv preprint arXiv:2407.16867, 2024.
240 S. X. Leong, S. Pablo-Garcı́a, Z. Zhang and A. Aspuru-Guzik, ChemRxiv preprint DOI:

10.26434/chemrxiv-2024-7fwxv, 2024.
241 N. Alampara, S. Miret and K. M. Jablonka, arXiv preprint arXiv:2406.17295, 2024.
242 T. T. Duignan, ACS Physical Chemistry Au, 2024, 4, 232–241.
243 Y.-L. Liao, B. M. Wood, A. Das and T. Smidt, The Twelfth International Conference on Learning

Representations, 2024.
244 A. Merchant, S. Batzner, S. S. Schoenholz, M. Aykol, G. Cheon and E. D. Cubuk, Nature, 2023,

624, 80–85.
245 H. Yang, C. Hu, Y. Zhou, X. Liu, Y. Shi, J. Li, G. Li, Z. Chen, S. Chen, C. Zeni et al., arXiv

preprint arXiv:2405.04967, 2024.
246 M. Van Kempen, S. S. Kim, C. Tumescheit, M. Mirdita, J. Lee, C. L. Gilchrist, J. Söding and
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315 W. Wang, Z. Wu, J. C. Dietschreit and R. Gómez-Bombarelli, The Journal of Chemical Physics,
2023, 158, year.

316 R. A. Vargas-Hernández, K. Jorner, R. Pollice and A. Aspuru-Guzik, The Journal of Chemical
Physics, 2023, 158, year.
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