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PAL 2.0: a physics-driven bayesian optimization
framework for material discovery†
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The lack of efficient discovery tools for advanced functional materials

remains a major bottleneck to enabling advances in the next-

generation energy, health, and sustainability technologies. One main

factor contributing to this inefficiency is the large combinatorial space

of materials (with respect to material compositions and processing

conditions) that is typically redolent of such materials-centric applica-

tions. Searches of this large combinatorial space are often influenced

by expert knowledge and clustered close to material configurations

that are known to perform well, thus ignoring potentially high-

performing candidates in unanticipated regions of the composition-

space or processing protocol. Moreover, experimental characterization

or first principles quantum mechanical calculations of all possible

material candidates can be prohibitively expensive, making exhaustive

approaches to determine the best candidates infeasible. As a result,

there remains a need for the development of computational algo-

rithms that can efficiently search a large parameter space for a given

material application. Here, we introduce PAL 2.0, a method that

combines a physics-based surrogate model with Bayesian optimiza-

tion. The key contributing factor of our proposed framework is the

ability to create a physics-based hypothesis using XGBoost and Neural

Networks. This hypothesis provides a physics-based ‘‘prior’’ (or initial

beliefs) to a Gaussian process model, which is then used to perform a

search of the material design space. In this paper, we demonstrate the

usefulness of our approach on three material test cases: (1) discovery

of metal halide perovskites with desired photovoltaic properties,

(2) design of metal halide perovskite-solvent pairs that produce the

best solution-processed films and (3) design of organic thermoelectric

semiconductors. Our results indicate that the novel PAL 2.0 approach

outperforms other state-of-the-art methods in its efficiency to search

the material design space for the optimal candidate. We also demon-

strate the physics-based surrogate models constructed in PAL 2.0 have

lower prediction errors for material compositions not seen by the

model. To the best of our knowledge, there is no competing algorithm

capable of this useful combination for materials discovery, especially

those for which data are scarce.

1 Introduction

Discovery of new and advanced materials with desirable proper-
ties is pivotal for driving technological advancements that can
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New concepts
Materials discovery is currently in a state of renaissance of importance,
thanks to the acceleration possible through the application of machine
learning tools. This paper presents a novel materials discovery algorithm
that is based on a Bayesian optimization framework. The key novelty of
our method, PAL 2.0, is the construction of a physics-based prior mean
for the Gaussian process surrogate model. We achieve this in two steps:
first, using XGBoost to select the physical descriptors most correlated to
the target property being optimized. Second, we use those selected
physical descriptors as the input encoding vector to a neural network
model that predicts the target property. This combination of XGBoost
with neural networks provides a physics-based prior model of the
material space to inform a Gaussian process model. The two most
compelling contributions of PAL 2.0 are that we demonstrate superior
optimization performance by finding the optimal target within the lowest
number of iterations when compared to state-of-the-art models such as a
representative off-the-shelf Bayesian optimization package, SMAC, as well
as one-hot-encoded Gaussian process models for material discovery, and
that we provide a predictive physics-based model for the material space
capable of offering valuable chemical insights. Overall, PAL 2.0 offers
great potential to advance the field of materials discovery, offering
researchers and practitioners a powerful and easy-to-use tool to
accelerate the development of materials for critical applications in
energy, health, and sustainability.
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address contemporary challenges in global health, energy, and
sustainability. The discovery process invariably involves a
search for the optimal material composition (a combinatorial
optimization problem) and synthesis conditions (a continuous
variable optimization problem). A major bottleneck in finding
optimal material compositions and processing conditions is
the lack of efficient discovery tools that can search very large
material spaces, which sometimes contain on the order of
100 000 materials. A traditional Edisonian experimental search
for optimal materials relies on expert knowledge, focusing on
materials closely aligned with configurations known to perform
well. Further, molecular simulations, by offering insights into
microscopic behaviors and accurately predicting macroscopic
properties, could potentially obviate the need for expensive
experimental measurements.1–3 However, molecular simula-
tion approaches, of which density functional theory (DFT)
and molecular dynamics (MD) are two prime examples, can
also be prohibitively expensive for an exhaustive search of the
large combinatorial search space that often characterizes mate-
rial systems. As such, there remains a need to design tools that
can accelerate materials discovery by exploring only a fraction
of the possible combinatorial space. For research lab-scale
studies, there is also a need to have a machine learning tool
that is adept at handling small data sets, often containing less
than 50 data points, for which a neural network approach is
untenable.

Computational tools that can accelerate material discovery
generally fall under one of the following three paradigms:
(i) feature engineering, (ii) predictive models for molecular
properties, and (iii) optimization algorithms, Fig. 1. Feature
engineering refers to the extraction of correlations between
variables using raw data. Such methods enable us to gain
physical and chemical insights into material systems that can
then inform material discovery tools. For example, in ref. 4, the
authors used a modified version of the SISSO5 method to extract
features that assist in classification of solid-state materials into
classes such as perovskites, spinels and rare-earth intermetallics.

On the other hand, availability of large data sets through sources
like the Materials Genome Initiative6,7 and high-throughput
quantum chemistry frameworks has led to the development of
several neural network and machine learning models for mole-
cular property prediction.8,9 Such models can be used to predict
properties of unknown materials and hence inform the mate-
rial discovery process. However, while feature engineering
and predictive modeling offer tools for material discovery,
the challenge of navigating potential molecular combinations
persists. That is where the third paradigm of methods lies that
we call ‘‘optimization algorithms’’ or, more commonly, mate-
rial discovery methods. These methods provide efficient search
and optimization strategies to navigate the often overwhelming
combinatorial space of materials candidates.

A brute-force approach to finding the optimal elemental
combination of a material for a given target (e.g., the best solar
cell efficiency) involves randomly and exhaustively exploring
the material space. This approach does not leverage informa-
tion from previously explored candidates nor expert domain
knowledge to improve its search strategies. Additionally, it is
typically infeasible unless examining smaller combinatorial spaces.
Likewise, evolutionary methods, like Genetic Algorithms,12 have
also been used for categorical domain optimization. However,
such evolutionary methods are locally exploitative and therefore,
can get trapped in locally (rather than more globally) optimal
regions.

In recent years, BayesOpt has become a widely adopted
algorithm for global optimization of black-box functions that
are expensive to evaluate.13–16 It has been used to optimize a
wide range of problems, including automatic algorithm config-
uration, automatic machine learning toolboxes, and optimization
of combinatorial spaces for materials and drug discovery.10,17–24

A BayesOpt algorithm essentially requires two sets of functions:
(i) a ‘‘surrogate model’’ for the objective function and (ii) an
‘‘acquisition function’’ that is updated, based on the surrogate
model, to provide a recommendation for the next candidate
to explore. Some typical examples of surrogate models include
Gaussian Processes,25 random forests26 and Bayesian Neural
Networks.27 The most commonly used acquisition functions
include probability of improvement,28 expected improvement,29

and upper confidence bound.30

The application of BayesOpt in material discovery requires
additional considerations. Unlike categorical optimization
in machine learning and hyperparameter optimization, the
notion of similarity and representation of candidate choices
becomes important in material science applications. Commonly
used ‘‘one-hot-encoding’’ representations for chemical and mate-
rial domains fail to capture the true physical and chemical
similarity between candidate choices, as depicted schematically
in Fig. 1 (top right). The drawback arises from using binary
variables to depict a design choice such that all design choices
are equally similar to each other since they all differ by one
Hamming distance. Another representation for materials involves
providing compositional information and structural information
in terms of graphs.17 However, training models to accurately
encode structural data require large training data sets that are

Fig. 1 LHS: Schematic depiction of the categories of methods currently
used for material modeling and discovery, showing some example
approaches. PAL 2.0 lies at the intersection of physics-informed and
predictive models used in material discovery methods. RHS:[top] Repre-
sentation of the commonly used ‘‘one-hot-encoding’’ for design choices
and [below] a similarly inspired representation of the concept of ‘‘similar-
ity’’ obtained by using physical descriptors instead.
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frequently unavailable. In reality, there is an obvious similarity
between materials that have similar chemical and physical proper-
ties. Optimization strategies that can leverage physical and
chemical information to determine similarity between candidate
choices are expected to accelerate the material discovery process,
as was demonstrated by Hase et al.10 through the innovative
Gryffin method.

In this paper, we have developed a new materials discovery
algorithm, Physical Analytics pipeLine 2.0 (PAL 2.0), in which
we leverage domain knowledge, appearing in the guise of
chemical and physical properties, to develop surrogate models
that are then used within a BayesOpt framework. A description
of the construction and workflow of PAL 2.0 are discussed in
the following sections and in the ESI.†

2 Results
2.1 Physical analytics pipeLine, PAL 2.0

Addressing the directions highlighted above, we present a new
BayesOpt algorithm, Physical analytics pipeLine 2.0 (PAL 2.0) in
this work that is intended to be a successor to our earlier
version.11 PAL11 was specifically developed to optimize the
solution chemistry of solution-processed metal halide perovs-
kites by finding optimal pairing of solvent and metal halide
perovskite compositions that are the precursors to producing
high-quality thin films1,31–33 and reduce the appearance of
crystalline intermediates.2 PAL is based on a Gaussian process
(GP) model with a linear prior mean function. In PAL, the
combinatorial space of the perovskite constituents is encoded

using one-hot-encoded vectors and the solvent is represented
by its dielectric constant and density, where the descriptors are
chosen based on expert domain knowledge. Although PAL used
physics-based GP models, the method is specific to the material
system and relies on expert knowledge to choose the physical
descriptors that optimally encode the input space.

The new approach, PAL 2.0, presented in this paper, is a
generalization of that original version of PAL.11 Both involve a
Bayesian optimization framework that uses a physics-informed
Gaussian process (GP) model. However, there are three key
improvements and novel capabilities of PAL 2.0 compared to its
progenitor PAL version. The new proposed framework involves:
(i) descriptor selection for the search space based on decision
trees, (ii) construction of a physics-based prior mean function
using neural network (NN) models, and (iii) construction of a
GP model using the NN prior mean function and subsequent
use of this model in BayesOpt. Mathematical details of the
model construction are provided in the Methods section (Sec-
tion 4) and the overall workflow of the method can be seen in
Fig. 2. Note that details of the nomenclature used in this work
are given in the ESI† (Section S1).

As mentioned earlier, every material can be characterized in
terms of its physical and chemical properties, but a priori
knowledge of which properties are more important in optimiz-
ing the target variable is often lacking. By using XGBoost as part
of the PAL 2.0 framework, we pick out the physical descriptors
that are most representative of the material domain, making
the search essentially unbiased toward expert knowledge,
which, in many cases, is unknown. The algorithm typically
finds a small number of important properties that correlate

Fig. 2 Overall workflow of the PAL 2.0 framework. The inputs to the framework include (i) design choices shown as the colored balls and (ii) a semi-
expert hypothesis space that includes physical properties that the user suggests may be correlated with the target property being optimized. The PAL 2.0
methodology itself can be split into three steps shown in the gray rectangles in the figure. The Gaussian process-neural network model is trained with an
initial dataset to create the expert surrogate model which is then used in the Bayesian optimization framework with an expected improvement acquisition
function to determine the optimal material.
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with the chosen target (rather than just one) and, importantly,
can autonomously determine their relative weighting in a
manner that even an expert might be unable to do. In the
PAL 2.0 workflow, the physical descriptors chosen by XGBoost
become the input variable set for the GP surrogate model.

When fitting GP models on scarce data such as those
encountered in materials discovery, the main challenge is to
obtain suitable prior knowledge and encode it into the model
either through the kernel function or the mean function. In the
machine learning literature, research has mainly focused on
approximating the kernel function of the GP model using
NNs.34 Training deep kernel functions, however, poses two
main constraints: (i) they require large training datasets and
(ii) they have to be positive definite in order to define an inner
product on the material search space. The mean function, in
comparison, has no such constraints and therefore, can be
trained more easily to create a predictive GP prior. Further-
more, the assumption that all prior information can be
encoded in the kernel function of the GP model when using a
zero mean function (m(xD) = 0) does not always hold. For
example, if the optimization landscape is such that in some
regions we have a non-zero objective function value and in
other regions the objective function value is zero, we can easily
prescribe a prior to the mean function that will encode this
information exactly but we cannot ensure the same with a
kernel function. Therefore, obtaining an informed prior mean
function allows more flexibility and guarantee in encoding
prior knowledge. The contribution of our method is to create
such a physics-based prior mean function using neural net-
works (NN). Having a predictive and accurate description of the
optimization landscape allows the acquisition function to
quickly find the optimal material in a few iterations. As a result,
the NN ‘prior mean function’ ultimately boosts the perfor-
mance of the Bayesian optimization step, as seen in the results.

We demonstrate the performance of the PAL 2.0 methodology
on three material data sets relevant to energy applications.

1. Organic semiconductors:
(a) Target: electron affinity of the semiconducting polymer.
(b) Objective: maximize electron affinity.
(c) Possible combinations: 64.
2. Mixed B-site perovskites:8

(a) Target: band gap of perovskite crystal.
(b) Objective: minimize band gap.
(c) Possible combinations: 244.
3. Perovskite molecule–solvent binding energy:11

(a) Target: intermolecular binding energy of perovskite
complex and solvent.

(b) Objective: maximize perovskite–solvent binding energy.
(c) Possible combinations: 240.
We also stress test the method by assessing the effect of

varying amounts of initial training datasets and by running PAL
2.0 on a very large dataset of approximately 70 000 COF struc-
tures that find applications in methane storage.35 These stress
tests are added in the ESI† (see Section S6). In the subsequent
sections, we describe each data set, the data set source and the
BayesOpt performance of different methods. For each dataset,

the prediction accuracy of the surrogate models (GP-0 and
GP-NN) is compared using mean squared error which is
computed as:

MSE ¼ 1

n

Xn
k¼1

ykð Þ � ŷkð Þð Þ2 (1)

where n is the total number of data points over which the error
is being computed, yk is the true target property value and ŷk is
the predicted target property value. It is worth noting here that
for all the results discussed in the succeeding sections, both the
surrogate models (GP-0 and GP-NN) are trained using the same
number of initial training points and the input variables to
both models are the descriptors selected using XGBoost.

2.2 Discovery of doped p-type organic semiconducting
polymers

Organic semiconductors, composed of small molecules or
polymers, offer flexible, lightweight, and adaptable optoelec-
tronic properties distinct from their inorganic counterparts like
silicon. Within this class, p-type organic materials, which are
made by introducing acceptor impurities into the framework of
the semiconductor, specialize in transporting positive charge
carriers, or holes. In this study, we explore the electronic
properties of doped p-type organic semiconducting polymers,
which have applications in organic light-emitting diodes
(OLEDs), organic solar cells (OSCs), and thermoelectrics, and
can be manufactured via highly scalable solution processing
protocols.36,37 For doping to occur in solution, the conducting
polymer and dopant must experience a dative bond-based
interaction (forming a ‘‘doped complex’’) in a solvent medium.
Thus, there are three distinct chemical species in the solution:
the polymer, dopant, and solvent. Processing via a solution-
based approach can create a large combinatorial space gene-
rated from a chemically diverse set of polymer, dopant, and
solvent design choices.

We analyzed a DFT-generated small subset of this design
space of four design choices for each species, leading to
64 unique combinations of the resulting p-doped semiconduct-
ing material. This data originates from a detailed study on
three polymer segments, each differentiated by its Lewis basi-
city, backbone functionality, and solid-state microstructural
attributes.38 Within this data set, PAL 2.0 was leveraged
to identify which properties, if any, from a set of physical
constants available from open-source databases39 and DFT
calculations, are most important when optimizing a polymer–
dopant–solvent system for the EA of the doped complex.
We selected the electron affinity as the target metric because
p-doping is known to enable charge transfer if there is a
sufficient offset between the polymer’s HOMO/ionization
potential (IP) and the dopant’s LUMO/EA.40 Details on the
DFT methods used to calculate the electron affinity for each
combination are given in the ESI† (Section S3A).

PAL 2.0 achieved an optimal target value while only explor-
ing, on average, roughly 30% of the design space, a modest
improvement over existing optimization algorithms (see Fig. 3).
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The fraction of the space explored is determined as

% explored ¼ #of materials explored during BO

Total number of materials in the dataset
; (2)

in Fig. 3(C). The numerator in the above equation includes the
percentage of data used for initial training of the surrogate
models. The reader can find a detailed description of other
optimization algorithms in Section S2 (ESI†). The results shown
describe a distribution of the space explored to find the optimal
material over 200 BayesOpt trials. These trials used randomly
initialized input data from 6 combinations, representing 10%
of the entire space. Our results also identified that the dopant’s
LUMO property had an overwhelmingly relative importance to
the model, while the polymer’s HOMO did not. This is con-
sistent with the finding in Mukhopadhyaya et al.38 that the EA
of the dopant dictates that of the entire polymer–dopant
complex. It is likely that solvent properties were not selected
for this target because the solvent screening effects would be
minimal over the polymer–dopant bond distance, usually less
than 3 Å. Further, it is possible that the number of thienothio-
phene rings present in a repeat segment of the polymer,
designated as ‘‘Polymer-TT’’ in Fig. 2, is selected as being of
minor importance because thienothiophene is an effective
Lewis acid, which would help in the electron-accepting abilities
of a polymer–dopant complex.

2.3 Discovery of optimal metal halide perovskite
combinations

MHP have garnered attention due to their exceptional electro-
nic and optical characteristics. These properties position them
as useful materials in applications like photovoltaic devices,
LEDs, and X-ray detectors. A notable advantage of perovskites is
the tunability of their composition and processing methods,
which has yielded solar cell efficiencies exceeding 25%.41,42

Furthermore, they can be processed at room temperature using
commonly available elements. Within the realm of solar cells,
the adaptability of perovskites presents both promise, due to the
witnessed boost in efficiencies and stabilities, and challenges
stemming from the multitude of design choices. We leverage
PAL 2.0 to identify perovskite compositions that (i) possess strong
photovoltaic capabilities, and (ii) pair with solvents to yield the
best quality of solution-processed thin films.

2.3.1 Discovery of metal halide perovskites with photovol-
taic properties. The bandgap is a crucial property for metal
halide perovskites due to its direct influence on their optoelec-
tronic properties and performance in various applications.
In this example, we highlight PAL 2.0’s role in identifying
perovskite combinations with the lowest bandgap from a recent
data set comprising of mixed B-site perovskite species pro-
duced via DFT by Mannodi-Kanakkithodi et al.8

The data set features 244 unique formulations, sourced from
specific mixtures of three halide ions, four A-site cations, and

Fig. 3 Performance of the GP-NN model on the material discovery of doped p-type organic semiconducting polymers. (A) Material design space,
(B) physical property representation of material design features shown in (A). Details of the physical properties are given in Table S1 (ESI†). (C) Predictive
accuracy of GP-NN model against state-of-the-art GP models commonly used in material discovery, (D) superior Bayesian optimization performance of
the GP-NN model (orange box) compared to state-of-the-art models (indicated by needing less of the parameter space to explore before successfully
reaching its target) and (E) Selection of important (well-correlated) physical properties selected by the algorithm from the property space in (B).
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six B-site cations. In terms of halides, the selection is made up
of the routinely utilized chloride, bromide, and iodide ions. For
the B-site, while the most commonly adopted species are lead
(Pb) and tin (Sn), the data set also incorporates options to
consider germanium (Ge), calcium (Ca), barium (Ba), and
strontium (Sr). On the A-site front, the options consist of
formamidinium (FA), methylammonium (MA), cesium (Cs),
rubidium (Rb), and potassium (K). The design choices for each
feature are depicted in Fig. 4. The ‘‘property basket’’ consists of
the descriptor choices selected by Mannodi-Kanakkithodi et al.,
which were utilized in predicting the bandgap of the mixed
perovskite species.8 Since the perovskites consist of B-site
alloys, properties for the B-site are given as a weighted average
of the elemental physical properties. The weights are given by
the elemental composition at the B-site.

To pinpoint the combination with the lowest bandgap (MA,
Pb, I), PAL 2.0 (GP-NN) proved highly efficient. On average,
it explored just 11% of the available design space after
200 BayesOpt trials (see Fig. 4). In contrast, the random search
on average explored 50% and a GP model with a 0-prior mean
choice (GP-0) searched 15% of the space. These trials used
randomly initialized input data from 24 combinations, repre-
senting 10% of the entire space. Our feature engineering
approach identified the electron affinity of the A-site cation as
the most important descriptor in representing the design
choices of this feature. For the B-site cation, the electron

affinity and ionization energy of the ion were identified as
important descriptors, but their importance paled in compar-
ison to the electronegativity – which was identified as the most
important differentiator between B-site cation design choices.
Lastly, for the halide ions, ionic radius and density were
identified as the most relevant properties.

2.3.2 Design of metal halide perovskite and solvent pairs
for high-quality solution-processed thin films. In the solution
processing of metal halide perovskites, the choice of solvent
medium plays a pivotal role in determining the formation,
morphology, and performance of the resulting films.1,32,33,43,44

In this application, our goal was to optimize the design of
solution-processed films at a molecular level by maximizing the
intermolecular binding energy between the perovskite compo-
nents and the solvent medium. This binding energy has been
shown to influence the properties of the resulting thin film at a
macroscopic scale.1,31,33,45 We leveraged the data set from
Herbol et al.11 for lead-based MHPs to identify solvent and
perovskite constituent pairs that yield the highest intermole-
cular binding energy.

The examined data set consists of five key features: the
solvent molecule, choice of A-site cation (A), and choices of
the three halide ions (X, Y, Z). Together with a central lead ion,
these form the Pb-A-XYZ perovskite structure. The A-site design
choices includes cesium (Cs), methylammonium (MA), and
formamidinium (FA), while halide options consist of iodide (I),

Fig. 4 Performance of the GP-NN model on the material discovery of metal halide perovskite solar cell materials. (A) Material design space, (B) physical
property representation of material design features shown in (A), (C) predictive accuracy of GP-NN model against state-of-the-art GP models commonly
used in material discovery, (D) superior Bayesian optimization performance of the GP-NN model (orange box) compared to state-of-the-art models
(indicated by needing less of the parameter space to explore before successfully reaching its target), and (E) selection of important (well-correlated)
physical properties selected by the algorithm from the property space in (B).
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bromide (Br), and chloride (Cl). We provided eight solvent
options based on a list of commonly used solvents for perovskite
processing. They include: tetrahydrothiophene 1-oxide (THTO),
dimethyl sulfoxide (DMSO), dimethylformamide (DMF), N-
methyl-2-pyrrolidone (NMP), gamma-butyrolactone (GBL), acet-
one, methacrolein (METHA), and nitromethane (NITRO).

We selected properties for each feature (X/Y/Z-halides, A-site
cation and solvent) based on prior physical knowledge of their
potential impact on the binding energy (our target variable).
We explored four basic properties for the halide features:
electronegativity, electron affinity, ionization energy, and ionic
radius of the halide. For the A-site cations, we considered the
ionic radius, binding enthalpy of DMF towards the A-site
cation,33 the dipole moment and the number of potential
hydrogen bonding atoms of the A-cation. Finally, for the solvent
feature, we considered six properties: the Gutmann donor
number (DN),1,44,45 Lewis acceptor number (AN),46 lithium
cation affinity (LCA),47 dielectric constant,48 dipole moment
and molar volume (MV) of the solvent molecule.

Using PAL 2.0’s GP-NN, we identified the combination with
the highest binding energy (Br, Cl, Cl, FA and THTO) by
exploring 11% of the available design space. Comparatively, it
took GP-0 with filtered property descriptors 13% percent of the
design space to locate the optimum combination. A OHE GP-0
model took 16 percent of the space to do so (with large
variability in its convergence results), see Fig. 5. Other methods,

like SMAC and HyperOpt explored over 20–40% of the design
space before they were able to locate the best combination.
Additionally, these benchmark methods had large variability in
their results over the BayesOpt trials.

For property descriptors, there were no standout properties
selected to represent the halide and cation features, each
selected property having a similar level of importance. On the
other hand, two standout properties (dielectric constant and
donor number) were identified for the solvent feature to
differentiate between the various solvent design choices. The
choice of these properties is significant since the simulations that
created this dataset are run with an implicit solvent thereby
making the dielectric constant an important differentiator for
the solvent choices. Additionally, the ability of PAL 2.0 to discern
significant features for the solvent through its XGBoost compo-
nent exemplifies the system’s capability to surpass expert selec-
tion. The initial version of PAL, as presented in Herbol et al.,11

utilized a physics-based prior reliant on expert-derived factors
such as the dielectric constant and solvent density. In contrast,
PAL 2.0 independently recognized and attributed significance to
these same features, underscoring the advanced feature selection
capabilities of XGBoost and its effectiveness in this context.49

Leveraging this capability, PAL 2.0 astutely pinpointed the Gut-
mann donor number (DN) as a critical property—a measure
acknowledged for its efficacy in isolating potent solvents for the
solution processing of metal halide perovskites.1,31,45,48,50–53

Fig. 5 Performance of the GP-NN model on the material design of metal halide perovskite and solvent pairs for best solution processed films for solar
cells. (A) Material design space, (B) physical property representation of material design features shown in (A), (C) predictive accuracy of GP-NN model
against state-of-the-art GP models commonly used in material discovery, (D) superior Bayesian optimization performance of the GP-NN model (green
box) compared to state-of-the-art models (indicated by needing less of the parameter space to explore before successfully reaching its target), and
(E) selection of important (well correlated) physical properties selected by the algorithm from the property space in (B).
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3 Discussion

In this paper, we have described the construction of a physical
analytics pipeLine algorithm, PAL 2.0, that builds on a Gaus-
sian process-based Bayesian optimization framework to accel-
erate optimization of the large combinatorial spaces that are
inherent in many material discovery problems.

The novelty of our work lies, firstly, in the incorporation of
important physical descriptors selected by the XGBoost algo-
rithm to enhance the physical realism of our surrogate model.
Secondly, in the construction of a physics-based prior mean
using a neural network approach. The net result of these novel
approaches is to leverage physical domain knowledge specific
to the system of interest. However, it should be noted that
another advantage is that the descriptor selection done by PAL
2.0 dispenses with the need/requirement to be an expert with
an understanding of which descriptors/features are the most
informative for the system. A semi-expert user is free to provide
a list of descriptors that might be important and the method
will-autonomously-choose the most appropriate ones from that
list. As a result, PAL 2.0 is able to find the optimum target
objective faster (i.e., in fewer iterations) than many state-of-the-
art optimization methods, including SMAC,54 Hyperopt,55 and
Genetic Algorithms.12

The performance of PAL 2.0 is demonstrated on three
material data sets which include doped p-type organic semi-
conductors and perovskites. Both these classes of materials
show immense promise for the next generation of solar cells,
but the algorithm itself is completely materials-agnostic and
indeed can be used for applications well outside the realm of
materials. Any application for which the parameter set is either
large enough to discourage a systematic search or the data are
sparse and/or expensive (i.e., tackling both ends of the data set
size), and the features that are most closely correlated with the
objective are largely unknown is a suitable candidate for
exploration using PAL 2.0. In each of the material cases we
studied here, we have shown that PAL 2.0 outperforms all other
methods we tested. Within the PAL 2.0 framework, the GP-NN
model that combines some neural network assistance in con-
cert with BayesOpt exhibits the best convergence and predictive
capabilities.

Furthermore, the surrogate model constructed by PAL 2.0
provides valuable chemical insight into the material system,
which can be transferred to learning domains outside of the
training set. For example, in the doped p-type semiconducting
polymers, of all the descriptors provided, LUMO was selected by
the method as the most important physical descriptor when
optimizing for EA. This is consistent with previous findings
which show that the dopant’s EA is most correlated to its
LUMO40 and that the EA of the dopant dictates the EA of the
entire polymer–dopant complex.38 Additionally, earlier studies
research have underscored the significance of the Gutmann
donor number (DN) and dielectric constant as pivotal descrip-
tors for distinguishing solvents in the solution processing of
metal halide perovskites.1,31,45,48,50–53 These findings show that
the physics-based surrogate model, embedded with necessary

property descriptors, could be a great starting point to find
material candidates in similar domains with scarce data.

In summary, the PAL 2.0 approach exhibited the following
advantages:

1. It outperforms or, at the very least, is competitive with, the
optimization performance of other BayesOpt approaches that
we tested.

2. It has the ability to select physically relevant descriptors
for the surrogate model and their relative weighting.

3. The test errors (MSE values) of the GP-NN surrogate model
are lower than other models, implying that GP-NN is more
predictive.

4. Having a model that is predictive opens up the possibility
of optimization in different ranges of target values for different
applications where data are scarce, and finally.

5. Can initiate material discovery for a material system with
as few as 25 observations from experiments or computation.

4 Materials and methods

This section provides details of the PAL 2.0 methodology.

4.1 PAL 2.0 methodology

PAL 2.0 is a physics-based Bayesian optimization framework.
The PAL 2.0 logic flow is shown in Algorithm 1.

Algorithm 1 PAL 2.0 methodology

Require: Initial data samples and physical descriptors list for
each design choice
1: Estimate most important set of descriptors (D) using
XGBoost
2: Estimate hyperparameters of the prior to the GP mean
function, i.e. the neural network model (m(xD))
3: Estimate hyperparameters of the prior for the kernel function
of the GP model
4: Compute the posterior probability distribution based on the
prior (m(xD) and k xD; x

0
D

� �
) and initial data samples

5: repeat
6: Select new observation (x(t)

D ) based on the acquisition
function

7: Obtain objective function value at (x(t)
D ), f (x(t)

D )

8: Update posterior with (x(t)
D )

9: Every ‘n’ iterations, update the GP model hyperparameters
10: until ‘N’ candidates are explored
11: return Best material explored

Each step of the algorithm is discussed in the following
subsections.

4.1.1 Descriptor selection. The first step in our methodol-
ogy involves descriptor selection for individual design features
from the set of descriptors provided by the user. This step is
vital as the goal is to enable the method to facilitate material
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discovery in a physics-driven manner, with the descriptors
establishing that link. In machine learning, three common
approaches guide the descriptor selection process: wrappers,
embedded methods and filters.56 The wrapper approach
employs the designated regression or learning algorithm, such
as GPR, to uncover the significance of features. In contrast,
filters are independent of the regression and learning algo-
rithms, filtering out features before the regression task. This
filtering is performed using statistical measures such as Fish-
er’s scores57 or information gain.58 A Fisher score is the
gradient (or derivative) of the log likelihood function. Informa-
tion gain quantifies the knowledge obtained about one random
variable through the observation of another. Embedded meth-
ods integrate the strengths of wrappers and filters: they possess
the iterative nature of wrappers while maintaining the proces-
sing speed of filters, but with superior accuracy. In this work,
we employ the embedded method approach using Extreme
Gradient-Boosting (XGBoost).49 One major advantage of using
XGBoost over other commonly used methods, such as LASSO
(least absolute shrinkage and selection operator),59 or filtering
based on Pearson correlation coefficients,60 is that, through
pruning of the decision trees, we are able to extract a ranked list
of the most important descriptors for a given target material
property.

4.1.2 Physics-informed prior mean function construction.
Suppose we represent the objective function by f (xD), where xD

is a vector representing the design choices based on the
physical descriptors (D) chosen by XGBoost. The surrogate
model in the Bayesian Optimization framework approximates
f (xD). In this work, we consider that f (�) is drawn from a GP with
a prior mean function m(xD), and a covariance function,
k xD; x

0
D

� �
. The posterior probability distribution on the mean

function (mi) and covariance (vi) of the GP model is evaluated
based on new observations (x(t)

D ) and the prior using the
following equations,

mi = m(xD) + k(xD,x(t)
D )(k(xD,x(t)

D ) + Z2I)�1(y(xD) � m(xD))

vi = k(x(t)
D ,x(t)

D ) � k(xD,x(t)
D )(k(xD,x(t)

D ) + Z2I)�1k(xD,x(t)
D )T

(3)

A popular prior mean function choice is the 0-mean func-
tion, m(xD) = 0. This prior mean function is useful when we
have very few, or no, observations of our system. It helps in
preventing ad hoc assumptions and biases that might be
included in the model by forcing a functional prior mean
function choice. However, in the case of material discovery,
we often start with some observations of the space. In this
work, we leverage these observations to pick out the most
relevant physical descriptors, as discussed in Section 4.1.1,
and construct a prior mean function for the GP model. The
novelty of our approach lies in the construction of a physics-
based prior mean function (m(x)) using NN for the GP model.
The NN prior mean function takes the selected descriptors (D)
as the input vector and predicts the optimization target as the
output. We use a mean squared error loss function and the
Adam optimizer61 to train the NN. Additionally, we use L1 and

L2 regularization on the weights of the NN to prevent over-
fitting the model. Once the NN is trained, we obtain the prior
mean function for the GP. The NN is trained using the initial
set of observations and then kept fixed through the material
discovery process. We refer to this physics-based GP model as
the ‘‘GP-NN’’ model. An advantage of employing a NN prior
mean function over a 0-prior mean function is the ability to
harness available information through a model trained on the
input data. Additionally, the NN prior creates a predictive
model of the space with just a few observations and therefore,
improves the BayesOpt performance of the GP-NN surrogate
model. However, the limitation of such a model is that it
requires some amount of initial data to train off of.

Finally, we consider that two materials are similar if their
physical descriptors (D) are similar. Here, we measure the
similarity using a 5/2 Matérn kernel. Formally, a 5/2 Matérn
kernel is used to estimate the covariance (k(x(1)

D ,x(2)
D )) for the

property descriptors representing the material design choices
(see eqn (4)).

kMaternð5=2Þ x1; x2ð Þ ¼ sm2 1þ
ffiffiffi
5
p

rþ 1

3
5r2

� �
e�
ffiffi
5
p

r;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD
i¼1

li x
ð1Þ
D;i � x

ð2Þ
D;i

� �
2

s
;

(4)

where x(1)
D and x(2)

D represent two property descriptors vectors for
the material design choices. Here sm and l represent the
smoothness and length scale hyperparameters of the kernel
that are optimized for each n Bayesian optimization iteration
(see Algorithm 1), while r measures the Euclidean distances
between the two feature vectors. The hyperparameters of our
GP-NN model (from the mean function and covariance) are
optimized using a ‘‘maximum likelihood estimate’’ approach62

in concert with the Adam optimizer.61

4.1.3 Acquisition function and bayesian optimization. We
used the commonly deployed ‘‘expected improvement’’ (EI)
acquisition function15 to determine the next promising sets
of experiments to conduct for each reaction. We have found EI
to work well in the past for our studies of metal halide
perovskite systems.11,63 We utilized PyTorch’s Bayesian optimi-
zation framework (BOTorch)64 to conduct these experiments.
The overall work flow for the PAL 2.0 methodology is shown in
Fig. 2.

Data availability

The code for this article is made publicly available at https://
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