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An evaluation of recent advancements in
biological sensory organ-inspired
neuromorphically tuned biomimetic devices

Animesh Sinha,a Jihun Lee,a Junho Kim a and Hongyun So *ab

In the field of neuroscience, significant progress has been made regarding how the brain processes information.

Unlike computer processors, the brain comprises neurons and synapses instead of memory blocks and

transistors. Despite advancements in artificial neural networks, a complete understanding concerning brain

functions remains elusive. For example, to achieve more accurate neuron replication, we must better

understand signal transmission during synaptic processes, neural network tunability, and the creation of

nanodevices featuring neurons and synapses. This study discusses the latest algorithms utilized in neuromorphic

systems, the production of synaptic devices, differences between single and multisensory gadgets, recent

advances in multisensory devices, and the promising research opportunities available in this field. We also

explored the ability of an artificial synaptic device to mimic biological neural systems across diverse applications.

Despite existing challenges, neuroscience-based computing technology holds promise for attracting scientists

seeking to enhance solutions and augment the capabilities of neuromorphic devices, thereby fostering future

breakthroughs in algorithms and the widespread application of cutting-edge technologies.

Wider impact
This study provides a comprehensive analysis of algorithms designed to mimic the operational characteristics of the human brain. Furthermore, we discuss the sensory
systems and constraints inherent in newly built single- and multisensory devices. The subsequent section explores prevailing research patterns in neuromorphically-
tuned devices. Neuromorphic engineering refers to the advancement of systems that imitate the functioning of the human brain to achieve enhanced energy efficiency,
parallelism, and cognitive capabilities for numerous activities, including, but not limited to, object identification, association, adaptability, and learning. Neuromorphic
devices have significant potential as innovative computer architectures that provide energy-efficient devices with excellent precision. Here, we discuss the prevalent issues
identified by various authors and identify potential areas for improvement that directly influence the advancement of AI-integrated gadgets. This review also seeks to
unveil the advancements in neuroscience, enabling a comprehensive exploration of the capabilities and practical applications of neuromorphic science.
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1. Introduction

Since 2010, mortality rates of neurological diseases have been on
the rise.1 Neurological conditions have emerged as the leading
cause of impairment in humans, accounting for approximately
9 million deaths annually.2 Consequently, effective management
of neurological illnesses necessitates specialized treatment,
encompassing access to medical specialists, a variety of diag-
nostic tools, and intricate therapeutic modalities. Unfortunately,
in most real-life situations, there exists a shortage of resources,
leading to inadequate provision of treatment for individuals with
neurological disorders.3 Furthermore, the complex nature of these
conditions poses challenges in accurate diagnosis and treatment,
often resulting in misdiagnosis and delayed medical intervention.
Addressing these challenges requires a comprehensive understand-
ing of the brain, entailing its brain functions and underlying
mechanisms.4,5 Among recently developed advanced artificial
intelligence (AI)-driven electronic breakthroughs, neuromorphic
computing stands out as the most attractive and innovative
technology.6–12 The term ‘‘neuromorphic’’ is derived from ‘‘neuro,’’
referring to the nervous system, and ‘‘morphic,’’ indicating shape or
form. A neuromorphic system is a computational system that
replicates the architecture and behavior of the human brain.13

For easy understanding, neuromorphic computing involves engi-
neering advancements aimed at replicating the operations of the
human brain to achieve optimal energy consumption, processing
speed, and cognitive skills, such as object recognition, associative
thinking, adaptation, and learning.

While neuromorphic systems strive to mimic brain function-
ality for executing basic machine-learning tasks, their primary
benefit lies in the utilization of analog and mixed-signal versions
of essential perceptron networks and complex spiking neural
networks. Synapses in the brain allow neurons to process infor-
mation and create memories.14 This design enables the brain to
quickly and efficiently perform complex calculations, with mini-
mal energy consumption. In recent years, significant develop-
ments have been made in neuromorphic systems, including

organic electrochemical neuromorphic devices,15–20 neuromorphic
memristors,21–25 stretchable neuromorphic efferent nerves,26–28

synaptic devices,29–35 neuromorphic chips,36–39 and robots,40–43

among others. Although neuromorphic systems hold promise
for the future, they require further development to demonstrate
their efficacy as tools for neuroscience research. This under-
scores the difficulties faced by the neuromorphic community.
Despite the inherent structural advantages of neuromorphic
systems, researchers must compete with the well-established
products of traditional computing that have undergone gen-
erations of optimization and have been meticulously tailored to
the underlying manufacturing technology.

The human brain comprises billions of neurons linked by
trillions of synapses.11 Consequently, scientists worldwide are
actively exploring optimal material combinations for creating
artificial synapses capable of handling massive amounts of
complex data in realistic environments while consuming minimal
power.44 Moreover, artificial synaptic devices face challenges such
as rapid information transmission, susceptibility to spikes, and
the need for large-scale integration, necessitating significant
research focus.45 Hardware computer systems draw inspiration
from the brain’s hierarchical organization, with the neurosynaptic
architecture powering these artificial neural networks through
transistors.46 In massive computer systems, billions of transistors
are integrated into a single silicon chip.47 Furthermore, several
significant distinctions exist between the computing principles of
the brain and silicon-based computers. First, computers segregate
processing and storage units, whereas the brain integrates neurons
and synapses in close proximity. Second, the extensive three-
dimensional (3D) connectivity of the brain surpasses the capabil-
ities of silicon technology, which can only support connections in
two dimensions.11,48 Computer transistors function primarily as
switches to create deterministic Boolean circuits, while spike-
based event-driven computations in the brain are inherently
stochastic.49 Additionally, these additional factors must be evalu-
ated. First, evaluating the feasibility of implementing increasingly
complex algorithms on an implanted device is essential. Second,
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determining how these algorithms can effectively adapt to patient
preferences is necessary. Stacey highlighted the use of deep
learning in neuromorphic chips that operate with limited power
and demonstrate significant predictive capabilities for detecting
seizures with easy tunability.50 Similarly, Isabell et al. investigated
the viability of a customizable system for predicting epileptic
seizures using a low-energy neuromorphic device.51

Complementary metal-oxide semiconductor (CMOS) technology
is the most advanced technology implemented thus far in the field
of neuromorphic engineering.8,52 This method effectively reduces
power consumption during neuromorphic computations. However,
CMOS technology suffers from data storage limitations as it loses
all data during power failure. Currently, researchers are shifting
their focus towards leveraging nonvolatile random-access memory
(NVRAM).53,54 With the emergence of NVRAM devices, circuit
designers can now explore avenues to enhance the energy efficiency
of core deep neural network (DNN) operations. These devices offer
advantages such as low switching energy, high density, and super-
ior durability compared to conventional devices. However, due
to the unknown precise number of neurons interacting within
the brain to produce intricate cognitive processes, replicating the
brain’s neural network and data storage remains challenging.
The demand for analog designs has expanded to include mixed-
signal designs, resulting in the development of various advanced
analog and digital semiconductor circuits.

Individuals are frequently exposed to stimuli that engage
multiple senses, including visual perception, hearing sensation,
haptic sensation, gustation, and olfaction. A singular sensory

system that measures a single stimulus often requires a high
estimation accuracy rate. Signals from various sources are often
noisy and unreliable.55,56 Developing techniques to reduce noise
and fluctuations, while preserving computational efficiency, is
crucial for real-world applications. Therefore, there is a need for
devices with faster signal processing capabilities. Alternatively,
integrating multiple sensory modalities may enhance object
localization and precision detection.57,58 Humans naturally rely
on multiple sensory modalities that bear considerable resem-
blance to multimodal brain networks.

This review aims to provide a comprehensive understanding of
artificial neurons and their essential functions in biomimetic
applications. The topic is currently undergoing intensive research,
primarily involving numerical analysis based on a few hardware
applications. While neuromorphically-tuned devices boast diverse
applications, it is challenging to encompass them all within a
single study. Nonetheless, we have endeavored to review all
recently developed neuromorphically-tuned biomimetic devices,
elucidating their fabrication processes and applications. In
Section 2, we delve into the inspiration behind artificial synapse
systems, while Section 3 explores the currently used materials,
such as organic, inorganic, organic–inorganic hybrids, and per-
ovskite quantum dots (PQDs) for fabricating devices. We also
compared single and multisensory systems, spike-based memris-
tors, artificial vision systems, UV light detection, and color
recognition. Section 5 describes butterfly- and spiderweb-
inspired neuromorphic devices. Fig. 1 presents the most com-
monly used algorithms, as well as recently used materials for

Fig. 1 Overall depiction of algorithms, materials utilized, fabrication techniques and gadgets, and applications of neuromorphically tuned biomimetic
devices. Reproduced with permission from ref. 59. Copyright 2019, Nature Publishing Group. Reproduced with permission from ref. 60. Copyright 2020,
American Chemical Society. Reproduced with permission from ref. 61. Copyright 2022, The National Academy of Sciences. Reproduced with permission
from ref. 62. Copyright 2023, Wiley-VCH.
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device fabrication and their respective applications. Finally, we
highlight the current research gaps and the extensive potential of
this subject, proposing new research paths to address real-world
challenges. These endeavors will facilitate the development of
more effective devices, enhancing existing neural network systems
and fostering progress across several fields, such as robotics,
sensory technologies, and healthcare monitoring.

2. Synapse systems

The term ‘‘synapse’’ was introduced by Sir Charles Sherrington
in 1897 to denote the point of connection between nerve cells.63

Synapses represent physically recognizable cellular sites where
functional connections occur between neurons. Neuronal com-
munication is essential for brain activity, as its effectiveness
allows pre-established neural networks to operate dynamically.64

2.1. Biological synaptic systems

Axons predominantly establish synapses in the brain, often
organizing them linearly, resembling pearls on a string. When a
single presynaptic neuron forms numerous connections to a
postsynaptic cell, it reduces transmission failures but restricts the
possibility of synaptic transformation (Fig. 2A). Presynaptic neu-
rons release neurotransmitters, while postsynaptic neurons detect
these neurotransmitters using various receptors (including gluta-
mate receptors, glycine receptors, and protein receptors).65 All
receptors have unique functions in the synaptic system. For
instance, glutamate receptors play a crucial role in facilitating
excitatory communication between neurons in the brain. They are
particularly important in processes such as memory formation,
learning, and neurodegenerative conditions.66 Glycine receptors
are crucial for enabling rapid inhibitory communication between
the nerve cells in the spinal cord and brainstem.67 G protein-

coupled receptors, in contrast, are transmembrane protein mole-
cules with similar structures that enable the nervous system to
react correctly to external stimuli and internal conditions.68

The burgeoning efforts in AI have been considerably influ-
enced by the biological realm, where people and animals
interact with each other to enhance the effectiveness of regular
activities. This ongoing two-way interaction between organisms
has contributed to continuous improvements in abilities,
knowledge, and complexity. Consequently, biomimetic artifi-
cial synaptic systems with diverse structures and operational
mechanisms have been developed as a result.

2.2. Artificial synaptic systems

The development of artificial synapses that mimic biological synap-
tic functions and can be seamlessly integrated into computing
systems is crucial for advancing human life. These systems should
exhibit characteristics such as high compactness, multipurpose
functionality, autonomous learning capabilities, adaptability to
new circumstances, sustainability, and the ability to simultaneously
store and analyze data. However, limitations in materials science
(including delays in developing new materials, understanding
material properties, environmental impact, and efficiency) currently
impede the progress of neuromorphic systems and gadgets linked
to AI. Researchers have explored various artificial synaptic systems,
such as chemical synapses,64,70–72 electrical synapses,73–77 electro-
chemical synapses,46,78–81 and photonic synapses82–86 (Fig. 2B).

In chemical synapses, communication occurs via the secretion
of a neurotransmitter from a specific neuron and its recognition
by a neighboring cell.86 Here, chemical transmission relies on
complex presynaptic molecular systems that control the release of
neurotransmitters in a probabilistic manner (Fig. 2C), necessitat-
ing an intricate postsynaptic system.87 Conversely, electrical
synapses involve the direct connection of the cytoplasm of

Fig. 2 (A) Illustration of a biological synaptic system. (B) Various types of artificial synaptic systems: chemical, electrical, electro-chemical, and photonic.
Reproduced with permission from ref. 64. Copyright 2014, Nature Publishing Group. Reproduced with permission from ref. 46. Copyright 2022, (CC BY
4.0) Nature Publishing Group. Reproduced with permission from ref. 69. Copyright 2022, (CC BY 4.0) Nature Publishing Group. (C) Represents synaptic
signal transmission.
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neighboring cells through the clustering of intercellular channels
known as gap junctions. These gap junctions directly link the
interiors of two adjacent cells.88 Furthermore, electrochemical
measurements of neurotransmitters have conventionally been
used to assess their transportation beyond synapses, providing
valuable insights into the relationship between neural commu-
nication and behavior.89

Some researchers have explored the use of electrochemical
synapse systems to develop various devices, such as protonic
synapses for solid-state devices,88 non-volatile organic electro-
chemical devices (NVOECDs),15 organic electrochemical tran-
sistors (OECTs),79,90 and organic electrochemical synaptic
devices (OECSDs)78. Additionally, Huang et al. and Chen et al.
provided comprehensive analyses of the processes and practical
applications of chemical synaptic systems.91,92 Harikesh et al.
compared biological synapses and printed organic electroche-
mical synapses (OECSs) to demonstrate the learning behavior
and effectiveness of their system. They indicated that the
switching characteristics of the transistor, which depend on
ionic concentration, can effectively modulate the spiking
frequency.46 This modulation closely resembles the behavior of
biological systems and has potential applications in event-based
sensors. According to Bhunia et al., OECTs offer excellent sensi-
tivity, operational stability, and low electrical consumption.93

Despite these several advantages, it is imperative to concurrently
address the following key aspects, which are essential for ensuring
a robust fabrication process of electrochemical synaptic devices:

(1) Understanding the process of ion penetration through a
dielectric barrier into a semiconductor layer is crucial for the
development of artificial synaptic networks.94

(2) It is essential to comprehend the impact of various
characteristics of transistor devices, including their micro-
scopic structure, population density, and material interface.95

(3) The transformation of theoretical modeling into practical
artificial synapses necessitates a deep understanding of
complex chemical dynamics.

Recently, photonic synaptic devices have gained increasing
popularity due to their distinct advantages over electronic
synaptic devices, including broad bandwidth, reduced cross-
talk, and low power consumption capabilities.96–100

Artificial photonic synaptic components, capable of both
detecting light and facilitating synaptic transmission in a single
device, are emerging as strong contenders among existing photo-
nic synapses. These devices react directly to external light stimuli,
enabling temporary memory and instantaneous analysis of optical
data and information. Hence, photonic synapses not only perceive
light signals but also record the entire chronology of events,
encompassing light intensity and the quantity, length, and fre-
quency of light spikes, effectively simulating the retina’s sense of
sight. Moreover, photonic synaptic devices offer a broader band-
width, superior resistance to interference, and reduced crosstalk
compared to electronic synapses.100,101 In a recent study, Wang
et al. investigated the development of artificial neural systems
(particularly, neuromorphic vision sensors) leveraging the concept
of biological visual systems.102 They analyzed the fundamental
components of the human eye, such as the retina, optic nerves,

and brain, and their collaborative functionality (Fig. 3A). These
components transform the external optical inputs into electrical
impulses, which are then converted into ionic signals. Synapses
analyze, interpret, and store these signals, with the retina pre-
processing these signals before sending them to the primary visual
cortex for recognition and information processing. However, when
the top electrode of a 2T vertical photodetector (Fig. 3B) is
positively biased, it generates an external electric field that flows
from the top to the bottom. Each electrical stimulation causes the
iodine vacancies to move up and down through the inorganic
layers. This action causes negatively charged ions to move in the
opposite direction. Nevertheless, the significant presence of BA+

hinders the migration of I�, leading to increased barriers for ion
migration. Consequently, vacancies with a positive charge migrate
towards higher inorganic material layers, while negative ions
accumulate at the bottom. The authors proposed that implement-
ing enhanced repeated training of an artificial synaptic system
could achieve a commendable recognition rate of 94.01%.

However, the utilization of these techniques may exacerbate
the complexity of the manufacturing procedure and the
increase the energy consumption of the gadget, necessitating
a controlled process environment. Kim et al. fabricated a
photonic synaptic device using an oxide semiconductor and a
ferroelectric material, enabling tunable synaptic functions
through a ferroelectric layer. Similarly, other researchers have
developed gate-tunable InGaZnO4 semiconductors,103 tunable
synaptic transistors,104 tunable ionic electrolyte transistors,105

and tunable opto-synaptic devices,106 highlighting the potential
of photonic synapses in neuromorphic device applications.

3. Fabrication of artificial synaptic
devices
3.1. Inorganic-based devices

Replicating energy-efficient brain function on a single device is a
challenging task. However, the energy-saving potential of these
methods is restricted by the significantly higher power consump-
tion of computer systems tasked with simulating the complexity of
the human brain. The inefficiency of conventional systems stems
largely from the architectural design known as the von Neumann
system,107 which creates a bottleneck that requires constant storage
and extraction of information from various system components,
rendering it one of the least energy-efficient methods. Some
researchers have explored a hardware-based approach using silicon
neuron (SiN) as an energy-efficient device (Fig. 4A),108,109 CMOS for
spike neuron memristors (to better mimic biological synapses and
multimodal sensing) (Fig. 4B),110 and halide perovskite film
(CsCu2I3) (as an eco-friendly, highly stable device (Fig. 4C)).111

Halide perovskites exhibit superior hysteresis compared to other
materials due to their low activation energy for ion migration,
alongside their rapid switching rate.112 This can be attributed to the
intricate interplay between metal and halide ions. However, their
thermal instability and hygroscopicity have led researchers to seek
substitutes for certain types of halide perovskites, such as organo-
metallic halide perovskites.113,114 These characteristics may also

Materials Horizons Review

Pu
bl

is
he

d 
on

 2
3 

7 
20

24
. D

ow
nl

oa
de

d 
by

 F
ai

l O
pe

n 
on

 2
02

5-
05

-0
7 

 8
:1

2:
30

. 
View Article Online

https://doi.org/10.1039/d4mh00522h


5186 |  Mater. Horiz., 2024, 11, 5181–5208 This journal is © The Royal Society of Chemistry 2024

indirectly render them vulnerable to environmental factors (such as
water or water molecules). Lead-halide perovskites have garnered
attention for their excellent power-conversion efficiency and
potential for low-temperature fabrication.115–117 We recommend
that researchers refer to the literature published by Vats et al. for a
deeper understanding of functional neuromorphic devices fabri-
cated from metal halide perovskites.118

Nonetheless, neuromorphic devices fabricated using inorganic
materials are delicate and are unsuitable for flexible and adap-
table applications. Furthermore, these materials lack the neces-
sary biocompatibility or biodegradability required for implantable
applications or for the production of dependable synaptic devices.

3.2. Organic-based devices

Biological detection systems serve two primary functions:
detection and adaptation.119 These systems enhance responses
to external stimuli and adapt to continuous background inputs.

Bioelectronic sensors utilize biological sensing receptors to
identify specific molecules or chemical analytes and generate
electrical signals. Conversely, artificial sensory mechanisms
may convert an external input into an electrical signal, and
then modulate the electrical impulse into either an excitatory or
inhibitory current or potential.120 Organic materials are pre-
ferred for neuromorphic device fabrication due to their suit-
ability for large-scale production and their biocompatible
properties.121

Organic material-based electronics closely mimic biological
substitutes and exhibit both short- and long-term
plasticity.122,123 The hardware implementation of artificial
neural networks typically follows a top-down approach based
on conventional technology, requiring proficiency in network
structures. In contrast, biology primarily functions through a
bottom-up approach. However, organic material-based electro-
nics face issues such as the need for larger memory capacity

Fig. 3 (A) Biological vision system, including optic nerves with a visual cortex explaining the multilayer structure of the retina. (B) 2T vertical
photodetector inspired by a biological retinal system. Reproduced with permission from ref. 102. Copyright 2024, Wiley-VCH.
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and higher energy consumption when compared to inorganic
material-based systems. Janzakova et al. developed a novel
organic material device composed of dendritic PEDOT:PSS fibers
using a bottom-up approach to enhance computing performance
(Fig. 5A).124 Their findings provide insight into high-potential
algorithmic improvements using structural plasticity learning
and minimizing screening requirements required for a wide
range of random topologies. Nevertheless, the authors could
consider including additional recommendations for techniques
to reduce the number of training phases.

Numerous studies have been conducted to develop energy-
efficient artificial synaptic devices using organic materials. For
example, in 2016, Xu et al. devised a synaptic transistor utiliz-
ing organic nanowires to minimize energy consumption.126 In
2017, Burgt et al. presented a 3D design that closely resembled
the human brain, alongside an electrochemical neuromorphic
organic system that demonstrated efficiency in terms of energy
use and expenses.15 In addition, Tanim et al. established an
artificial synaptic device using a blend of honey and CNT.127

However, certain constraints remain, such as the development
of an effective, biodegradable, and wearable synaptic transmit-
ter. Oh et al. recently produced a PVA-based memristor (Fig. 5B)

that enhanced synaptic plasticity and reduced energy use.125

The author used parallel computation (Fig. 5C) to assess the
potential of the PVA-based memristor for building sophisticated
neural networks. They trained the memristor using the logic
operators OR and AND (Fig. 5D) and evaluated the amount of
energy utilized during training. Researchers assessed the depend-
ability of the memristor using two binary inputs (V1 and V2) and
confirmed it by measuring the output currents (IOR and IAND)
(Fig. 5E). Fig. 5F shows the SPICE numerical simulation results for
handwritten digit pattern recognition. A flexible memristor links
the input and output neurons, as illustrated in Fig. 5G. After 50
epochs, the learning procedures translated the ideal weight dis-
tribution (Fig. 5H) into the cell conductance in the device arrays,
as well as the memristor array conductance distribution (Fig. 5I).
After 50 epochs of training, the neural network achieved a pattern
recognition accuracy of 92% on the constructed memristor
(Fig. 5J), approaching the efficiency of an ideal software system
that reflects the efficiency of the device.

However, there are still concerns to address, such as attaining
multidimensional conductance, regulated isotropic charge trans-
fer, comprehending the training model, and achieving intrinsic
material features, such as molecular packing. Considering these

Fig. 4 (A) Silicon nitride memristor with the TEM micrograph (left side). Hybrid barium titanite (BaTiO3)/silicon nitride (SiN) photonic platform (right side).
Reproduced with permission from ref. 108. Copyright 2017, American Chemical Society. Reproduced with permission from ref. 109. Copyright 2023,
Optica publishing group. (B) CMOS imager chip. Reproduced with permission from ref. 110. Copyright 2023, Wiley-VCH. (C) Schematic representation of
synaptic device fabricated by CsCu2I3 perovskite thin film with cross-sectional scanning electron microscopy (SEM) and atomic force microscopy (AFM)
micrograph image. Reproduced with permission from ref. 111. Copyright 2022, American Chemical Society.
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elements and creating a thorough assessment system for the
device performance remains an unresolved issue.

3.3. Organic–inorganic based devices

Consequently, one might think that the fusion of organic and
inorganic substances in materials research may offer a broad
range of possibilities for enhancing the functionality of neuro-
morphic devices. Recently, the use of organic–inorganic halide
perovskites (OHPs) for the production of optoelectronic devices
has skyrocketed. OHPs have excellent optoelectronic features
including substantial charge carrier mobility, adjustable band-
gaps, significant absorption coefficients, and long carrier diffu-
sion lengths.128–130 OHP properties may be adjusted using the
chemical formula ABX3 (where A = organic cation, B = metal
cation, and X = halide anion).131

Multiple studies have shown that OHPs can be used as artificial
nociceptors with remarkable homogeneity, adaptability, memory
of previous injuries, and pain sensitivity.132,133 This signifies a

major advancement in the pursuit of complete neuromorphic
computations and precise information processing in the human
brain. Fig. 6A shows the basic layout of a nociceptor system that
uses MAPbI3-(methylammonium lead iodide) OHP, with OHP
layered on top of a uniformly flat ITO substrate.132 Trung et al.
used ZnO nanorods, PEDOT:PSS, and polyurethane fiber to create
fibrous photonic artificial synapses (FAPS).134 The fabrication
process of the FAPS included the deposition and patterning of
an organic p-type semiconductor film made of PEDOT:PSS coated
onto a Au (gold) electrode (Fig. 6B). Subsequently, ZnO nanorods
were grown on a PEDOT:PSS tube using a hydrothermal method
(Fig. 6C). Fig. 6D illustrates the flexibility and fiber-shaped nature
of the FAPS, which can be wrapped in tubes and sewn onto the
fabric without experiencing significant malfunctions. One may
attempt this manufacturing procedure in their laboratory and
assess the results independently because it is relatively easy. The
authors suggest that this architecture could greatly minimize
power usage, resembling biological photoreceptors. The device

Fig. 5 (A) Dendritic electro polymerization imitating biological neural networks by applying an electrical signal. Reproduced with permission from ref.
124. Copyright 2023, (CC BY 4.0) Nature Publishing Group. (B) Vertical-type memristor on glass substrate and a poly(vinyl alcohol) (PVA)-based flexible
memristor. (C) Schematic representation of parallel computation in a memristor array. (D) Neural network for logic operations OR and AND. (E) Synapse
cell made by AND and OR. (F) An illustration showcasing the hardware-driven neural network for interpreting digits. (G) Crossbar array of a flexible
memristor. (H) Synaptic weight distribution to read the numbers written by hand. (I) The constructed memristor array’s conductance dispersion. (J)
Recognition of pattern effectiveness after 50 epochs of learning in a perfect software framework and the hardware-driven neural network with the
adjustable memristor. Reproduced with permission from ref. 125. Copyright 2023, Wiley-VCH.
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can also be integrated into fiber-based artificial synaptic arrays,
making it suitable for image recognition and memory.

Nevertheless, certain factors must be considered while
using OHPs.

(1) Although organic materials provide greater flexibility,
their performance may be severely affected by environmental
variables (such as humidity and thermal instability) when
hybrid materials are used for device fabrication.135

(2) The intrinsic instability and poor mobility of organic
materials can affect the reliability of devices and their ability for
integrating synaptic device arrays and accurately imitating real
synapses.136,137

(3) The resistive switching mechanism, which potentially
affects the operational efficiency of memristors, has not been
extensively studied.138

(4) The toxicity of lead-based devices is a serious environ-
mental concern.131

3.4. Perovskite QD-based neuromorphic devices

Nanomaterials with different shapes, such as nanowires and
quantum dots (QDs), can effectively convert light into electricity

and operate across a broad spectrum, resulting in optoelectronic
synaptic devices.139–141 PQDs have recently attracted considerable
attention as cutting-edge optoelectronic materials.142,143 This is
because they have excellent optical and electronic properties, such
as low exciton binding energy, long lifetime, comprehensive
spectral coverage, and high efficiency, which show that they could
be useful as optoelectronic devices.144–147 Some extensive research
has been conducted on neuromorphic computing in recent years,
focusing on the characteristics of perovskites.

Wang et al. utilized CsPbBr3 QDs as the main component
with other material combinations (Si/SiO2/PMMA/pentacene/
Au) to develop flash memory (Fig. 7A), where the pentacene and
CsPbBr3 materials had a type-II band alignment, which sepa-
rated the excitons at the interfaces.148 Flash memory devices
made of CsPbBr3 QDs (functioning as floating gates) trap
charged particles optically and release them electrically based
on the type-II band alignment between pentacene and CsPbBr3,
which causes excitons to separate at the interfaces. Synaptic
devices using a floating-gate construction often provide bene-
fits such as prolonged memory retention and a gate-tunable
effect. Nevertheless, the deposition operations of multilayer

Fig. 6 (A) Schematic representation of a Pd/MAPbI3/ITO memristive gadget for artificial nociceptors with a cross-sectional SEM image. Reproduced with
permission from ref. 132. Copyright 2023, American Chemical Society. (B) FAPS fabrication process. (C) FE-SEM micrograph of ZnO NRs/PEDOT:PSS/PU
(top and cross-sectional view). (D) FPAS as fabricated, twisted on tubes, and stitched on textile photographic images. Reproduced with permission from
ref. 134. Copyright 2023, Wiley-VCH.
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materials might amplify the intricacy of fabrication. Addition-
ally, the thickness of the top sedimentary material affects the
light absorption by the perovskite material.149 Furthermore,
when used as a conduction layer, the total charge conductivity
of perovskites tends to be relatively low, particularly in cases
where the gate effect cannot be produced. These characteristics
require a high operating voltage to provide a sufficiently high
response current, thereby increasing the electrical energy
utilization.

Hao et al. introduced a photonic synaptic transistor (Fig. 7B)
fabricated using an organic semiconductor with CsPbBr3 for an
artificial visual system application.150 As per the author’s find-
ings, combining CsPbBr3 QDs with organic semiconductors can
improve synaptic behavior. This is because of the significant
energy barrier between the valence band (VB) of CsPbBr3 QDs
and the highest occupied molecular orbital (HOMO) of the
organic semiconductor material. In addition, the presence of
charge traps within the channel or at the interface leads to a
low rate of combination of photogenerated charge carriers,
resulting in excellent synaptic performance.

However, there are additional challenges, such as the pre-
cise engineering of the interface between the floating gate and
charge-transporting material and ensuring suitable energy off-
sets. In addition, selecting a photoactive material with a long
exciton lifespan is crucial for enhancing the efficiency of the
charge separation process. Chen et al. described the photophy-
sical properties of a floating-gate function in photo memory.
They used P3HT (poly(3-hexylthiophene-2,5-diyl)) a p-type semi-
conducting polymer, along with a silicon substrate, and a
simple A-site substitution method (Fig. 7C) for rapid

responsiveness and minimal energy consumption.151 Similarly,
Ercan et al. investigated photonic synaptic transistors with a low
energy consumption.152 They fabricated these transistors using
QDs and P3HT, with composite nanofibers (CNFs) serving as
semiconducting channels (Fig. 7D). This approach provides a
convenient means for developing high-performance electronics,
including memory and visual perception systems that mimic
human capabilities, as well as advanced optical communication
systems. In addition, Gupta et al. used a material combination
(QDs/P3HT) comparable to that reported in a previous study
using doped Si and a SiO2 layer (Fig. 7E).153 They successfully
created trap-assisted optical synapses that enhanced the detec-
tion efficacy of a neuromorphic system.

Most metal halide perovskites (MHP) used in memory
registers switch symmetrically, which can cause significant
leakage current problems when building an array.155 During
these situations, the change in states could cause the updating
process to stop working because it sets off unwanted pathways
at the level of the neural network array, resulting in less
effective learning efficiency.

In a recent study, Park et al. used mixed-dimensional
perovskite QD heterostructures in artificial neural networks to
create neuromorphic electrical functions that make networks
better at learning and use less energy.154 The fabrication of a
mixed-dimensional stack junction between and ITO electrodes
is shown in Fig. 7F. The Al and ITO electrodes in this arrange-
ment represent the axons of a pre-neuron (grey) and the
dendrite of a post-neuron (yellow), respectively. When a pre-
synaptic pulse (VINPUT) was applied to Al, a postsynaptic
current (PSC) was created in the ITO using a mixed-

Fig. 7 A 3D schematic of (A) flash drive based on CsPbBr3 QD. Reproduced with permission from ref. 148. Copyright 2018, Wiley-VCH. (B) DPPDTT/
CsPbBr3 QDs synaptic transistor. Reproduced with permission from ref. 150. Copyright 2020, American Chemical Society. (C) P3HT/PQD-based
photomemory device. Reproduced with permission from ref. 151. Copyright 2021, Wiley-VCH. (D) photonic FET memory devices comprising CNFs.
Reproduced with permission from ref. 152. Copyright 2021, Wiley-VCH. (E) SiO2/CsPbBr3/P3HT based transistor structure. Reproduced with permission
from ref. 153. Copyright 2023, American Chemical Society. (F) Cs1�x FAxPbBr3 QD-based synaptic gadget with a cross-sectional HR-TEM micrograph.
Reproduced with permission from ref. 154. Copyright 2023, Wiley-VCH.
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dimensional stack design. They also reported that the energy
band of a synaptic device based on mixed-dimensional perovs-
kite QDs was influenced by the size of the QDs. The interaction
between the energy bands is affected by modifying the size of
the QDs, which in turn affects the transport of charges and the
manipulation of primary synaptic functions. Therefore,
the dimensions of the QDs can be regarded as a key technical
parameter for synaptic devices using mixed-dimensional
QDs. This study revealed a favorable approach for the develop-
ment of high-performance synaptic devices utilizing mixed-
dimensional halide perovskite QDs.

4. Applications
4.1. Comparison of single and multi-sensory systems

An advanced sensing system consists of multiple sensor com-
ponents and a pattern-recognizing unit that collects data and
uses neural-network-based software to detect, evaluate, and
make judgments. A neural network or comparable pattern
recognition tool is crucial because the sensor arrangement is
nonlinear and requires calibration.156,157 Machine learning
(ML) algorithms have been widely used to study the sensory
system in neuroscience, particularly in healthcare applications,
due to their promising applications such as blood pressure
estimation,158 recognition of silently spoken words,159 detec-
tion of human motions,160–163 and object recognition.164–168

There are two types of sensor devices that are determined by the
number of output signals: single- and multisensory devices.

A single-sensory system uses only a single output signal
from a sensor to extract features, whereas a multisensory
system uses several output signals of one or multiple sensing
types. Using machine learning techniques, a single sensory
system can detect a specific input, including pressure, strain,
tactile feedback, and other mechanical or health-related
information.169–171 This type of system enhances user comfort
by enhancing usability and mobility using machine-learning-
assisted data interpretation with a single signal.172,173 However,
some limitations must be discussed, such as neuromorphic
devices with a single sensory system, which may struggle to
multitask and integrate information across modalities, thus
restricting their application.159,160 For example, a neuro-
morphic tactile system can adapt to process and analyze touch
signals but may not be able to integrate the visual character-
istics or shape of the object. Most of the current research on
neuromorphic systems or devices focuses on a single pattern-
recognition challenge, limiting future advancements to a broad
spectrum of applications.

With the rapid development of biomimetic devices, incor-
porating AI into sensory systems requires a multidimensional
sensing device. Multimodal sensors collect data from several
modes to analyze signals. These multimodal descriptions
provide a more thorough representation of the multiple dimen-
sions of an identical object activity, thereby enhancing the
model’s knowledge and cognitive capacity. This implies that a
multisensory strategy is more beneficial for maintaining high

prediction accuracy than a single sensory system. Table 1 pre-
sents a comparison of the algorithms used in single- and multi-
sensory systems, along with their respective advantages. Some
recently developed multisensory devices include sensory mem-
ory processing systems (SMPSs) to detect multi-wavelength light
emission and multimodal data processing,174 all-polymer elec-
trochemical transistors (AECTs) to identify touch and taste,175

OHPs synaptic transistor for emulating photoelectric synaptic
activity and showcasing an artificial reflex arc,176 artificial multi-
sensory integration nervous (AMIN) systems to detect tactile and
iconic perception behavior,177 and oxide-based memcapacitor
(OMC) to operate data related to visual, aural, electrophysiologi-
cal, and mechanical features.178 Although multiple signal inte-
gration has been shown to improve prediction accuracy in ML
models, the following challenges need to be recognized while
developing a multi-sensory system:

(1) Challenges in data processing performance emerge as
the volume of data grows.179

(2) Sophisticated neural algorithms must be incorporated
into neuromorphic devices.30

(3) Real-time imitation of biological neuronal systems is
performed using artificial neuromorphic prosthetic devices.180

(4) A neuromorphic system for multidimensional signal
processing requires exceptional consistency.181

(5) Cross-sensitivity needs to be reduced to ensure accurate
measurements.169

4.2. Multi-sensory neuromorphic device

As humans acquire external inputs from their surroundings,
sensory receptors detect and transform these sensations into
nerve impulses conveyed to matching brain regions, thereby
enabling humans to interact with their surroundings.182 Multi-
sensory integration refers to the combination of information
from several sensory streams to create holistic awareness. This
integration helps clarify the differentiation of external stimuli
and enhances responsiveness.183 In contrast, using a single
sensory input in an artificial computer system for decision-
making often results in inherent uncertainty due to the random
nature, biased characteristics, and signal processing noise.184

For example, a multisensory device can detect varying degrees of
congruence between a participant’s vision, touch, and proprio-
ception; for instance, when a knife dexterously glides across a
fake hand and the participant simultaneously experiences pain
and danger. This congruence enables participants to perform
more complex recognition or decision tasks.185,186 Multi-sensory
integration offers another advantage known as the ‘‘inverse
effectiveness effect.’’187,188 Highly noticeable stimuli in one
sense activate the corresponding neurons, making them easily
detectable. However, it is difficult to detect weak signals using a
single sensory system.189 In such cases, multisensory integration
can significantly boost neural activity and the chances of detect-
ing and locating events. Some of the recently developed multi-
sensory integrated systems are discussed below.

An artificial sensory neuron utilizes a combination of sen-
sing processes to detect and analyze distinct patterns of a
fingerprint. It then determines whether the fingerprint is
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genuine, originating from real skin, or counterfeit, originating
from synthetic skin. Han et al. used light to discern the
distinctiveness of a pattern, whereas body heat was used to
confirm its validity (Fig. 8A).190 In another study, Liu et al.
proposed a multisensory system that utilized electrolyte-gated
vertical organic field-effect transistors (VOFETs) to make artifi-
cial tongues.191 It can perform numerous functions such as
recognizing, responding, and imitating the behavior of biolo-
gical sensory systems. The author explained this concept with
some easy steps, in which biological receptors perceive envir-
onmental stimuli and transform them into electrical impulses
(Fig. 8B). Signals were sent via a sensory transduction network
and transmitted to the cerebral cortex for additional evaluation
and comprehension. The preneuron transmits presynaptic
spikes to the synapses in response to an external input.

Subsequently, neurotransmitters in the presynaptic layer pro-
pagate toward the postsynaptic membrane, creating a postsy-
naptic current. Their findings could be improved by detecting
the mechanism for multiple objects (e.g., acetic acid, alcohol,
and ether) instead of just one. In addition, there needs to be a
mention of why the artificial tongues feel pain (as discussed in
the literature) when increasing the acetic acid concentration, as
the author only showcases the results without explaining
whether this device only works for acidic materials and will
be similarly helpful for other materials (i.e., alcohol and ether)
or if the device is pH-responsive.

Fig. 8C shows a schematic of a multisensory system (visuo-
tactile) for visual and touch information in the human neuro-
logical system.192 The tactile sensor used in the demonstration
consisted of an array of readily available Kapton and aluminum

Table 1 Comprehensive summary of single and multisensory systems with ML algorithms and their applications

Types Algorithm Sensing type Application Advantage Ref.

Single sensory
system

FNN Pulse signal Real-time blood
pressure
estimation

The results were highly reliable with a small mean deviation of o3%
with commercially available devices

158

Single sensory
system

LDA, Linear
SVM, Quadratic
SVM, Gaussian
SVM, K-nearest
Neighbors

Triboelectric
signal

Recognition of
the real-time
silent spoken
word

The Gaussian SVM model yielded the highest word classification
accuracy of 99.2%

159

Single sensory
system

LSTM Pressure Biomechanical
action level clas-
sification in a
smart mask

The smart hybrid sensor for biomechanical motion detection with an
overall accuracy of B88%

160

Single sensory
system

LSTM Strain Identifying
complex hand
motion

To maximize user convenience in terms of usability and mobility, a
sensor with a single channel was used to produce signals

161

Multi-sensory
system

AlexNet CNN
and sparse
neural network

Somatosensory
(strain) and
visual sensory
(camera)

Hand gesture
recognition

Bioinspired somatosensory–visual associated learning achieved the
best recognition accuracy (100%) compared with visual-based recog-
nition (89.3%) and somatosensory-based recognition (84.5%)

162

Multi-sensory
system

CNN Breathing
pressure

Recognition of
respiration types

The collection of respiratory signals from multiple channels
demonstrates superior recognition of respiration patterns when
compared to that of a single channel

163

Multi-sensory
system

CNN Pressure and
temperature

Object recogni-
tion using tactile
glove

The multi-sensory system, incorporating both pressure and tem-
perature signals, achieves an accuracy rate of 94.9%, surpassing the
85.65% accuracy rate of a single sensory system focused only on
pressure

164

Multi-sensory
system

CNN Tactile and
olfactory

Human identifi-
cation in rescue
conditions

In contrast to visual perception, a multi-sensory sensing system
involving tactile and olfactory presents an alternative method in dark
or blocked environments, demonstrating its superiority in identifying
humans during rescue operations

165

Multi-sensory
system

MLP Thermal con-
ductivity, contact
pressure, object
temperature,
and environ-
ment
temperature

Object recogni-
tion in object
size, shape, and
material

Integrating pressure sensing alongside thermal conductivity and
temperature sensing as a multimodal system significantly enhances
the accuracy of object classification, resulting in an overall accuracy
of approximately 96%. In contrast, relying solely on thermal con-
ductivity sensing yields a total accuracy of about 68.1%

166

Multi-sensory
system

CNN Bending, contact
position, and
temperature

Digital-twin-
based virtual
shop

In contrast to isolated values, the 15-channel spectrum in the time
domain for one gripping motion may contain more hidden infor-
mation. These data serve as a valuable feature of each sample, con-
tributing to enhanced classification accuracy

167

Multi-sensory
system

LDA Triboelectric
signal

Material
recognition

With data initially sourced from a single channel, sample clustering
appeared less structured, resulting in a classification accuracy of
52.7%. However, as the number of channels increased, the clustering
of samples became more distinct with a classification accuracy of
96.8%

168

LSTM (long short-term memory), FNN (feedforward neural network), SVM (support vector machine), CNN (convolutional neural network), MLP
(multilayer perceptron), LDA (linear discriminant analysis)
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foils with an air gap between them. Upon contact between two
different materials, the triboelectric phenomenon generates
electrical impulses via charge transfer, thereby achieving a tactile
response. The sensation of touch is made possible through the
triboelectric phenomenon. This involves the generation of elec-
trical impulses when two materials with different properties
come into contact. The amount of electrical impulse produced
by the triboelectric tactile sensor directly correlates with the
surface charge, which is influenced by the area of contact. The
author also discussed the concept of the inverse effectiveness
effect, explaining that highly noticeable sensory stimuli can elicit
strong reactions in corresponding neurons. This effect is caused
by the triboelectric gate voltage, generated from touch stimuli,
being affected by the confined charges at the interface created by
visual stimuli. As the visual stimuli become stronger, more
photo-generated carriers are trapped at the contact, resulting
in a higher detection of the triboelectric voltage. Although the
author claims that this principle can be applied beyond visuo-
tactile information, the literature has primarily focused on
tactile sensing using conventional tactile sensor concepts, with

no proper explanation for the detection and interpretation of
visual sensing signals.

In general, the integration of multisensory reception is
severely restricted owing to the challenge of effectively linking
sensors and synapses.195 Despite this challenge, researchers
continue to explore several multisensory systems, including
multifunctional neuromorphic e-skin via organic transistors,196

visual-haptic cognitive systems using photodetectors,197 and
bioinspired multisensory neuronal networks198.

In a recent study, He et al. introduced ML materials and
optoelectronic synapses (InGaZnO/methylammonium lead
iodide) for detecting visual and tactile information (Fig. 8D).193

ML materials facilitate tactile awareness by converting tactile
sensations into discernible light, which alters the optoelectronic
synapse weights. According to the author, light pulses help
evaluate the device’s neuromorphic light-interactive behavior,
directly linking it to neuronal communication. When combined
and transformed into postsynaptic currents, these pulse signals
mimic how neurons transmit information. Modifying this cur-
rent’s pulse width, pulse quantity, and pulse rate is essential for

Fig. 8 (A) Biological photo-thermal receptor for fingerprint recognition. Reproduced with permission from ref. 190. Copyright 2023, American Chemical
Society. (B) Representing perceiving and interpreting external inputs for taste and sound detection. Reproduced with permission from ref. 191. Copyright
2022, Wiley-VCH. (C) The biological neuronal system’s multimodal processing of visual and touch inputs. Reproduced with permission from ref. 192.
Copyright 2023, (CC BY 4.0) Nature Publishing Group. (D) Visual/Tactile system for a human (top) and artificial (bottom) synapse network. Reproduced
with permission from ref. 193. Copyright 2023, Wiley-VCH. (E) Schematic diagram of a biological somatosensory system (top) and artificial
somatosensory system (bottom). Reproduced with permission from ref. 194. Copyright 2022, Wiley-VCH.
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replicating the brain’s functions, particularly those related to
memory formation and decision-making processes. The author
asserts that the device effectively identifies written digital files by
emulating an artificial neural network combined with a ML
algorithm. It achieved an identification precision of 70% for
visual–tactile fusion, suggesting its potential for applications in
flexible frameworks and mechanically compliant structures.
Despite notable improvements, one can argue that distinct sen-
sory and processing unit setups give rise to problems related to
network convergence, spatial accuracy, and data transfer delays.
Therefore, researchers have mainly focused on combining the
detection, analysis, learning, and memorization functionalities
into a single device to enhance artificial perceptual systems.

According to Won et al., the traditional artificial sensory
system analyzes various types of information using a centra-
lized and successive computing structure. This process requires
the conversion of multimodal sensing signals into digital
format before the digital processor can be analyzed.199 As a
result, this approach requires significant hardware space,
power usage, and communication bandwidth. Recently, Zhu
et al. designed an artificial multimodal sensory device using a
spiking neural network (SNN) classifier and a group of
multimode-fused spiking neurons (MFSNs) that work in the
spike domain. Their methodology included detecting anoma-
lous temperatures and intense mechanical stimulation by
analyzing spike trains that transmit mechanical stimuli and
temperature data. These signals travel to the cerebral cortex,
where multimodal information is processed and combined to
make precise judgments (Fig. 8E).194

Some recent reports also suggest that researchers are con-
stantly trying other approaches, such as Brainoware with the
help of brain organoids200–202 (self-organizing pluripotent stem
cells from humans can form brain-like tissue that can imitate
the structure and functioning of a growing brain), to perform
voice recognition by differentiating the vowels of a certain
speaker.203 However, several issues may arise with this strategy,
and an inherent technological obstacle lies in the production
and maintenance of organoids. Furthermore, this effectively
preserves and facilitates the development of organoids that
harness computing capabilities. These findings suggest that
using a multimodal technique is more advantageous than
using a single sensory system for sustaining high prediction
accuracy.

4.3. Spike-based VO2 memristors

The architectural characteristics of most brain structures that
provide benefits include extensive interconnections between neu-
rons, coexistence of neural processing and consciousness, and the
use of spikes for communication.204,205 The primary emphasis of
the algorithm development for spike-based neuromorphic gad-
gets has been their applicability to deep neural networks and
other developing AI algorithms.11,206–208 As AI algorithms draw
inspiration from the brain, the utility of neuromorphic computing
is expected to increase.11,209 According to synaptic connection
topologies, some spike-based neuromorphic systems include
neurogrids,210 TrueNorth,204 SpiNNaker,205 BraneScales,211 and

Dynap-se,212 computer architectures that emulate communication
between organic neurons using spikes.

To develop a successful neuromorphic device, it is essential to
understand how biological neurons behave when neuro signals are
transmitted to an artificial network. The following are some
examples of recently developed memristors: first, neuromorphic
devices made of silicon nanosheets,213,214 and second, devices
made using a pulsed laser-fabrication process.215–217 However,
silicon-based devices face challenges such as high energy con-
sumption and low device efficiency.217–219 Later, laser-fabricated
devices became an alternative option for achieving better energy
consumption and efficiency. Some recently fabricated devices
include the following: a VO2 (vanadium dioxide) locally active
memristor has the benefit of emulating neural behaviors more
realistically in biological neuromorphic systems.220 This is because
they can closely mimic the behavior of neurons. Nevertheless, they
fail to provide a theoretical explanation of the memristor properties
or illustrate the oscillation behavior. Hence, it is crucial to better
understand the functioning of neurons using network models and
quantitative analytical techniques to investigate the dynamics of
neuromorphic systems.

Yuan et al. recently demonstrated the simple integration of
an asynchronous spike encoder and long short-term memory
spiking neural network (LSNN)-based decision system in VO2

memristor-based neuromorphic processing (Fig. 9A).221 The
memristor-based asynchronous spike encoder converts physio-
logical signals such as electrocardiogram (ECG) and electroen-
cephalogram (EEG) into two-channel trains while compressing
and encoding the data. According to the authors, their tempo-
rally encoded system was more neuromorphic-friendly than
frequency-encoded neurons. The frequency of spike production
depends on the rate of change of the original input signal. The
greater the rate of change of the initial input signal, the stronger
the spikes. This encoding method is advantageous because it
produces sparse spikes which lowers the quantity of data
required and minimizes the consumption of energy. Because
asynchronous spike trains maintain the signal information, they
can adequately recover the original signal, which is difficult for
frequency coding. Wang et al. identified comparable character-
istics, wherein the implementation of a temporally encoded
system substantially enhanced the information and energy
efficiency of neuromorphic hardware.222

In some cases, pulsed laser deposition is used to develop an
epitaxial VO2 memristor that functions as a calibratable artifi-
cial sensory neuron (CASN).181 This neuron converts sensory
signals from various receptors (such as photoreceptors, thermal
receptors, and mechanoreceptors) into electrical spikes. Neu-
rons transmit these electrical spikes to process them in a SNN
(Fig. 9B). The cerebral cortex processes neural impulses in
response to external stimuli. The VO2 memristor exhibits
volatile resistive switching behavior, transitioning between
high and low resistance when the applied voltage surpasses a
certain threshold. Epitaxial VO2 memristors feature threshold-
switching capabilities used in spike neuron implementation.
Fig. 9C shows the dynamic network structure of the brain,
which processes and stores signals using readily controllable
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programmed paths that follow nervous system algorithms
made by VO2 films grown on aluminum oxide (Al2O3).223 The
artificial synaptic network consists of a circular electrode,
which serves as a common terminal. This electrode imitates a
biological dendrite and is connected to a DC, bias tee, and
channels A, B, C, D, and E. Their argument indicated that the
network can be arranged hierarchically, creating a dynamic
neuromorphic framework facilitated by laser-controlled fila-
ment positioning with nonvolatile memory. The connectivity
pathways in these neuromorphic structures can be readily
manipulated, resulting in inherent memory capabilities based
on imprinted conduction routes similar to those observed in
organic nervous systems. Despite the VO2 memristor having
certain benefits, the currently developed systems do not exhibit
a high level of efficiency for neuromorphic systems, as they are
still in the experimental stage.

However, it can enhance the progress of hardware neural
network structures with brain-inspired algorithms while enabling
the implementation of neuromorphic computing. Furthermore,
the research now constrains several aspects of efficient sensing of
neuro signal and signal fluctuation concerns, substantiating their
applicability in practical neuromorphic device implementations.

Moreover, the firing rate of individual neurons contributes to the
potential degrees of freedom in network structure dynamics.224

A multidimensional space represents the activity of individual
neurons and the path from an input to an output represents the
response of the neuron. Consequently, despite its importance,
contemporary research faces substantial obstacles regarding the
process of signal filtration for individual neurons. Regardless of
these challenges, the development of effective human-machine
interfaces utilizing neuromorphic systems is of considerable
interest to researchers.

4.4. Application in an artificial vision system

The sense of sight detects 80% of the information among all
external stimuli.225 As a result, when it comes to observation,
the retina is among the most important parts of the human
body. Emulation of a human retinal system has served as a
source of inspiration for both device fabrication and research,
along with signal-processing algorithms.226,227 These advance-
ments have the potential to enhance AI and the Internet of
Things (IoT) in the future.

4.4.1. UV light recognition and visualization. Ultraviolet
(UV) radiation, with a wavelength of 10–400 nm, may have

Fig. 9 (A) Artificial neural signaling system constructed using a VO2 memristor for human machine interfaces. Reproduced with permission from ref. 221.
Copyright 2023, (CC BY 4.0) Nature Publishing Group. (B) VO2 spike-based neuromorphic multi-sensory system. Reproduced with permission from ref.
181. Copyright 2022, (CC BY 4.0) Nature Publishing Group. (C) Human brain inspired dynamic network structure for signal transmission using a VO2

memristor device. Reproduced with permission from ref. 223. Copyright 2023, (CC BY 4.0) AAAS.

Materials Horizons Review

Pu
bl

is
he

d 
on

 2
3 

7 
20

24
. D

ow
nl

oa
de

d 
by

 F
ai

l O
pe

n 
on

 2
02

5-
05

-0
7 

 8
:1

2:
30

. 
View Article Online

https://doi.org/10.1039/d4mh00522h


5196 |  Mater. Horiz., 2024, 11, 5181–5208 This journal is © The Royal Society of Chemistry 2024

detrimental effects on the skin, leading to premature aging and
skin malignancies.228 The intensity, duration, and amount of
exposure to ultraviolet (UV) radiation determine the severity of
these disorders.229,230 Therefore, the development of photonic
synapses that mimic the functionality of the retina and enable
selective detection and processing of ultraviolet (UV) inputs is
crucial for expanding human visual perception beyond the
range of visible light.

Park et al. used carbon nitride treated with nitric acid (NT-
CN) to establish a photonic synaptic transistor sensitive to UV
light (Fig. 10A).83 The device fabrication method involved the
formation of a thermally generated SiO2 film on a Si wafer. They
used NT-CN on an SiO2 surface as a UV-responsive interface
layer. They applied poly(methyl methacrylate) (PMMA) to the
NT-CN film for planarization of the NT-CN layer and as a
tunneling substrate. Pentacene served as the organic semicon-
ductor, whereas Au functioned as the electrode material.

The proposed principle for the device is that when exposed
to UV light, both the NT-CN and pentacene films produce
photoinduced electron–hole pairs (EHPs) (Fig. 10B). The holes
generated by photoexcitation tunnel through the PMMA layer
and enter the pentacene film. Conversely, the photoexcitation
process confines electrons inside the NT-CN films, creating a
negative potential that increases the drain current. Upon
removal of the UV light, the photoinduced EHPs in the penta-
cene film undergo rapid recombination. In contrast, the
trapped electrons in the NT-CN film cannot promptly recom-
bine with the holes, resulting in a prolonged recombination
period. This delay was responsible for the observed synaptic
properties. However, the author overlooked a crucial aspect of
their analysis, particularly the presence of substantial noise in
the raw UV data reflected by the target item.232,233 Li et al.
identified pentacene as a charge-transport material because of
its molecular structure, which is an important parameter in
memory devices.234

Moreover, owing to the elevated noise level of the initial UV
image information, residual background noise often persists
even after the traditional in-sensor preprocessing stage. Hence,
there is a need for a new UV imaging system that can perform
precise vision identification with minimal image filtering dur-
ing the backend analysis phase.235,236 Seung et al. demon-
strated the use of a synaptic phototransistor-quantum-dot
light-emitting diode (SPTr-QLED) to extract preprocessed
images from frequent and strong optical signals (Fig. 10C).231

The author further elucidates recognizing images using a deep
neural network. They emphasize that background noise in
target photos can lead to inaccurate detection because the
neural network is trained on a standard dataset of raw images
with little noise. Specifically, considering the significant
amount of noise in unprocessed UV photos, it is essential to
minimize background noise for precise image identification.
The preprocessing effectively reduced background noise and
improved the image recognition accuracy. The SPTr-QLED can
produce a preprocessed picture with less background noise
without needing extra image-filtering steps in the back-end
processing. This was achieved through on-device preprocessing

using a signal or none (SoN) approach. SPTr produces a
weighted photocurrent owing to consecutive noisy ultraviolet
(UV) inputs. Current-to-voltage converters connect the SPTrs
and QLEDs electrically such that the weighted photocurrent
can be changed to the postsynaptic voltage. The QLED module
uses this voltage as input. The QLEDs exhibited an exponential
rise in current when subjected to an input voltage, resulting in
enhanced contrast in both the electrical and visual outputs
(Fig. 10D). Nevertheless, the authors’ findings indicated that
the recognition rate achieved in the simulation was 86.2%,
whereas for in-sensor preprocessed images, it was only 49.7%.
This suggests that traditional synaptic photodetectors (SPD) are
inadequate for accurately recognizing noisy UV images. There-
fore, additional noise filtering is required to achieve a high
recognition accuracy. However, their findings have guided
researchers in decreasing the hardware complexities of SPD
and enhancing their efficiency.

4.4.2. Neuromorphic devices for color recognition. Tradi-
tional photodetectors convert incoming light stimuli into elec-
trical impulses in real time; however, their quick recovery
makes it difficult to store, recall, or preprocess any input
information.237,238 In contrast, the human visual system relies
on the optic nerve, which transmits visual data from the retina
to the brain for processing and storage.239 The immediate
reaction to stimuli in the brain allows synaptic strengthening
via neuronal signaling, which in turn allows for the memory of
that information.240,241

The use of optical color filters to categorize incoming
wavelengths limits the effectiveness of artificial retinal systems,
resulting in a low pixel density and significant spectrum
absorption loss.242,243 Nevertheless, most studies on photosy-
naptic devices rely on monochromatic optical stimulation.244

Weak or strong photoconductivity of active semiconducting
materials makes many color recognition synaptic systems
possible. However, when exposed to light, many of these
systems struggle to select specific light wavelengths.245,246

Therefore, achieving more effective color vision through multi-
spectral selectivity by regulating neural plasticity is an interest-
ing prospect.

Jo et al. introduced an artificial photonic synapse that
utilizes a precise QD mixing ratio to achieve quantitative
tuning.247 This synapse enables wavelength-specific responses
in a single pixel, enabling enhanced color selectivity to distin-
guish between optical wavelengths of varying intensities. The
process of imitating color recognition included creating a 7 � 7
grid of pixel arrays using a combination of mixed QDs (M-QDs)
and amorphous indium–gallium–zinc–oxide (a-IGZO) photo-
transistors (Fig. 11A). The constructed array structure provided
specific voltages to each data and gate node while keeping the
source node neutral. Their investigation focused only on iden-
tifying red, green, and blue (RGB)-color images using three
distinct modes: RGB, GB, and B (Fig. 11B). According to the
author, a critical factor in color perception is the transition
from nonvolatile to volatile properties over the visible light
spectrum. The identification rate increased as the pulse num-
ber increased until the 30th pulse was reached. However, after
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that point, the images started to blur, resembling the process of
human memory deterioration over time. Additionally, they
determined that the order of magnitude of RGB light-
stimulated photosynaptic currents significantly impacted
visual memory. However, further clarification is required
regarding their conversion from nonvolatile to volatile for use
as sophisticated artificial vision systems capable of efficient
color identification and optimal pixel density. However, this
study may guide researchers who want to construct replicable
biological visual systems with distinct visual elements.

Along with a similar type of problem identification and the
additional feature of structural recognition, Hou et al. introduced
a RGB narrowband photodetector array with panchromatic ima-
ging capability by primarily fabricating halide perovskite films
using a volatile solution (VS) method and then utilizing a multi-
layer algorithm to model the human retinal system (Fig. 11C).248

Perovskite has the benefit of the ability to manipulate its proper-
ties, namely its vast range of bandgaps.249,250 This allows panchro-
matic imaging in which multiple colors may be used to display
selected spectral responses within the red, green, and blue
channels (Fig. 11D). The photocurrent distribution at zero bias

clearly reveals the RGB characteristics of the original picture with
distinct contrast and accurate representation (Fig. 11E). The
authors presented two methods: (a) the channel-merging
approach, which involves normalizing 2D current data to pixel
intensity values with the minimum pixel value set at 0 (Fig. 11F(i)).
After translating the floating-point normalized values into inte-
gers, the sunflower image was rebuilt by stacking pixel-intensity
integers using RGB channels (Fig. 11F(ii)). In contrast, (b)
machine learning reconstruction utilizes a multilayered percep-
tron neural network to forecast pixel values based on the current
input data. The peak signal-to-noise ratio (PSNR) of the recreated
figure from channel merging is lower owing to the sensor array
setup error and measurement noise, which are intrinsically
corrected and reduced by the machine learning techniques
(Fig. 11F(iii) and (iv)).

Although the output may seem sustainable, some aspects
might directly impact the performance of the device, including
responsiveness, electron–hole transit, and material
bandwidth.251 Researchers might capitalize on the approach
provided by the author to address the research deficit in this
sector.

Fig. 10 (A) The structure of CNUVS is shown in the left panel, along with each of its components with SEM micrographs of NT-CN and NT-CN/PMMA
layers. (B) Working principle of CNUVS under UV radiation. Reproduced with permission from ref. 83. Copyright 2020, Wiley-VCH. (C) Illustration
depicting the internal components of the SPTr-QLED. (D) Schematic representation demonstrates integrating the SPTr-QLED to generate high-contrast
visible from the chaotic UV patterns. Reproduced with permission from ref. 231. Copyright 2022, AAAS.
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5. Others
5.1. Butterfly-inspired multi-sensory device

Research on butterfly architectures has recently increased with
respect to sensor applications.252–258 Qualities such as refractive-
index responsiveness and delicate architectural sensitivity are crucial
characteristics that are the current research goals. Wing character-
istics are also critical in energy-harvesting applications.259–262 Male
butterflies display vivid wing colors to entice females, who assess
possible partners based on the color designs’ intricacy, balance,
and vividness.263,264 Additionally, male butterflies emit chemical
pheromones that are crucial for grasping female butterflies in
mid-air.265,266 These chemical signals provide essential information
for species identification, mating excellence, and reproductive pre-
paredness. Female butterflies possess specific chemosensory recep-
tors that allow them to differentiate between various pheromone
patterns.267,268 These findings indicate the importance of a compre-
hensive study to enhance the understanding and create more
effective bio-inspired functional materials.

Zheng et al. recently addressed the need for specialized hard-
ware to gather data from various sensor elements based on the
architectural design of butterflies (Fig. 12A).269 This process
involves transferring signals to the processing module, which
leads to delays and increased energy consumption. Although
current AI primarily focuses on visual data, it is essential to
acknowledge that chemical signals can improve or change visual
perception. Therefore, they built a visuochemical apparatus using
molybdenum disulfide (MoS2) and graphene-based visual and
chemoreceptor neurons to analyze the data (Fig. 12B). The overall
concept involves the use of various chemical solutions to achieve
pheromone diversity. To demonstrate the circuit, AND and OR
gates were utilized (Fig. 12C and D). Different colors (red, orange,

green, and blue) of light-emitting diodes (LEDs) with varying
intensities were used to imitate the hue and intensity of male
butterfly wings (Fig. 12E and F). They used these colors to explain
mating rejection and acceptance.

Although the author achieved a certain amount of this goal,
this study has some limitations. This study mainly focused on
the chemical receptor-motivated sensory system rather than the
visuochemical system. However, further research on the utility
of this device is required. However, the author claims that
visual imaging methods in conjunction with chemical sensors
may assist in diagnosing skin disorders or in examining
biological samples to identify biomarkers linked to different
medical illnesses. Overall, for academics considering their
studies in the field of biologically motivated multisensory
systems, this literature can be a good motivation.

5.2. Spider web-inspired neurotransmitters

Spiders have a unique method for detecting object motion and
airflow and identifying potential threats.270–272 They use a net-
work of slits known as ‘‘lyriform organs’’ that are closely linked
to their nervous system, allowing them to pick up external
vibrations.273,274 Additionally, spider viscid silk is known for its
remarkable strength, hardness, and adhesiveness, making it an
effective tool for prey trapping.275,276 Spiders regulate the elec-
trostatic connections between spidroin molecular chains by
exchanging ions and protons in the spinning duct.277 This
process gives them remarkable mechanical properties, the ability
to adhere to surfaces, and the ability to spin silk continuously.

Zhou et al. examined artificial spider silk with excellent
mechanical characteristics and a conductive structure that
facilitated signal transmission (Fig. 13A and B).278 They used
PrDA hydrogel fibers, whose diameter can be easily adjusted by

Fig. 11 (A) Pixel-based M-QD/a-IGZO phototransistor perception based on the human vision system. (B) Each array pixel’s contour mapping in RGB, GB,
and B. Reproduced with permission from ref. 247. Copyright 2022, Wiley-VCH. (C) Retina-inspired panchromatic imaging system. (D) Wavelength vs.
detectivity graph. (E) Current mapping of three different channels: red, green, and blue. (F) Sunflower (i) optical image, and (ii) direct channel merging.
Neuromorphic processing (iii) without filtration and (iv) with filtration. Reproduced with permission from ref. 248. Copyright 2023, AAAS.
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controlling the spinning speed and distance between the nozzle
and roller (Fig. 13C). Using these fibers, the authors created a
synthetic synaptic transistor (Fig. 13E) that imitates the proper-
ties of biological synapses (Fig. 13D).

The ability of this transistor to function as a synaptic device
was demonstrated using various types (varying diameters) of
PrDA fibers, which showed a consistent counterclockwise hys-
teresis (Fig. 13F). The excitatory postsynaptic potential (EPSC)
was distinguishable by different current spikes with varying
pulse numbers (Fig. 13G). In addition, as the pulse width
increased, the EPSC gradually increased. This trend suggests
that a longer duration caused more ions to migrate between the
PrDA and In2O3 (Indium(III) oxide) layers (Fig. 13H). The paired-
pulse facilitation (PPF) index, which is important for signal
processing, was higher with a larger gate voltage (Vg) (Fig. 13I),
possibly because of the more significant proportion of trans-
ferred ions in the active region of the devices, such as biological
synapses.

Research on ionic hydrogels as synaptic devices offers a
fresh perspective on building artificial neural systems, and this
review highlights several promising avenues for further study in

this area. Nevertheless, to accomplish a remarkable amalgama-
tion of electromechanics predicted for continuous spinning,
further discourse is required concerning obstacles such as
interactions between molecules and the hierarchical arrange-
ment of synthetic fibers.

6. Research gaps and future
perspectives

This review offers an in-depth overview of the most recent
developments in neuromorphic devices inspired by biological
synaptic neural systems, keeping in mind the general audience
and experts involved in neuromorphic device research. First, we
explain how the researchers were motivated by the biological
synapse system and then further discuss the neural networks
used for single and multi-sensory systems and their advantages
and limitations for various applications. Neural networks offer
a range of powerful new approaches for addressing complex
problems related to pattern recognition, data processing, and
control.279,280 Computer vision, particularly ANNs and CNNs,

Fig. 12 (A) Visual and chemical signals of a male butterfly interacting with a female butterfly. (B) Optical afferent neurons constructed using MoS2

memtransistors, chemoreceptor neurons depending on graphene, and breeding pathways relying on MoS2 memtransistors. Logic circuit. (C) AND gate.
(D) OR gate. Four different chemical signals. (E) AND gate. (F) OR gate. Reproduced with permission from ref. 269. Copyright 2023, Wiley-VCH.
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has become more prevalent as a computational model in
neuroscience. However, the intricate neural signals in current
models may only partially reveal the enigmas of the brain,281

for example, (a) the type of code required for real-time
transmission of milliseconds of response in terms of voltage
spikes, and (b) depending on the human mood, such as anger,
the type of signal the brain transmits to control human
emotions. Interpreting and understanding intricate patterns
may be challenging when using manually created models that
prioritize simplicity. Furthermore, object categorization in the
brain involves several levels of intricate linear and non-linear
processing.282 Constructing operational models of visual
pathways that match human behavioral performance has

been a significant issue for neuroscientists and AI
researchers.

Nevertheless, neural networks provide significant potential
for future researchers by using extensive annotated imaging
data for training to create prediction models that can increase
output accuracy. Supervised learning is successful because of
the detailed feedback provided to the network in the form of
high-dimensional outcomes. For example, a model can be
trained to determine the lowest price among 10 fruits, depend-
ing on seasonal availability. In supervised learning, the same
algorithms may be used to predict the lowest price for the
10 other sets of fruits under similar conditions. Some studies
have also suggested that convolutional topology and activity

Fig. 13 (A) Electrostatic interaction of a spider web in the spinning duct. (B) Ion transfer and surface adhesion, illustrating the PrDA hydrogel fiber. (C)
Continuous draw-spinning of PrDA hydrogel fiber. Synaptic system. (D) Biological synapse. (E) Artificial synaptic transistor. (F) Consistent synaptic
transmission properties of the artificial transistor-based on drain-source voltage. (G) EPSC initiated by various voltage pulses from presynaptic spikes. (H)
EPSC increases relative to spike width. (I) The PPF index varies across various gate voltages. Reproduced with permission from ref. 278. Copyright 2023,
Wiley-VCH.
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normalization may result in a well-performing neural
model.283,284 Therefore, the aforementioned learning models
should be tested to achieve multidimensional efficient devices.

Artificial synaptic transistors (AST) such as spike-based
memristors and neurodevices inspired by the retina are among
the artificial synaptic devices covered in this review. Artificial
synaptic transistors can closely mimic natural neuromorphic
design architectures by considering the timing of the firing
action between two neurons (pre- and postsynaptic neurons) as
a critical factor affecting the synaptic matrix. Furthermore,
there is a consistent need for energy-efficient AST that replicate
the functions of neurons and synapses. Neurons interact via ion
channels,285,286 which affect their firing rate, which is linked to
the intensity of the input stimuli. Increased muscle stimulation
leads to a higher neuronal firing rate. The spike frequency
activates the synaptic transistor, converting its varying output
current into voltage signals to produce the final output. Hence,
a highly efficient and consolidated artificial spiking neurologi-
cal system, such as a medical nanobot, is required to convert
the sensing signals into spikes. In addition, signal propagation
speed and effective communication routing are issues with
spike-based neuromorphic devices.

Artificial synaptic sensors based on the human retina aim to
emulate mammalian retinal synaptic neuromorphic sensory
systems. Optical artificial synaptic devices consist of two dis-
tinct components: photosensors and transistor synaptic
devices, each serving specific tasks. These devices have intricate
architectures and require additional power to adjust the ema-
nating photosynaptic signals, leading to increased energy con-
sumption and reduced resemblance to biological receptors.
Hence, it is essential to create a visual artificial synaptic device
using a basic resistor structure that can function autonomously
without requiring external power.

The performance of a neuromorphic device is influenced not
only by the appropriate selection of an algorithm and a suitable
number of training models but also by the selection of appro-
priate materials for device construction. Researchers have
experimented with various material combinations including
organic/inorganic materials, metal oxides, semiconductor
materials, carbon derivatives, and QDs to develop neuro-
morphic chips containing artificial synapses. The aim of these

chips is to create a brain-like neuromorphic computing system
that closely imitates the functions of the human brain. Never-
theless, organic semiconductors exhibit instability at ambient
temperatures. Carbon derivatives have restricted speed, inte-
gration complexity, and dependence on electrical stimulation,
whereas metallic oxides have restricted control and adjustabil-
ity in neuromorphic activities. Moreover, oxide semiconductors
have wide optical bandgaps and low absorption coefficients in
the visible light spectrum. Fig. 14 presents a detailed summary
of the research gaps and future perspective in the field of
neuromorphic systems.

In the future, researchers should focus on developing con-
temporary neural networks that use neuromorphic computing
to address algorithmic issues. Algorithms can affect the design
and material selection of hardware layouts for tunable devices
that satisfy specific application requirements. Researchers must
change their programming approach to optimize the use of
neuromorphic computers. Combining suitable materials and
architectures with better optical and electrical properties for
synaptic devices is possible by learning about synaptic technol-
ogies and heterojunction devices that satisfy specific require-
ments. Considering these minor but impactful steps, researchers
can enhance the system performance multiple times. Finally,
experts from various fields must collaborate to develop state-of-
the-art devices, architectures, and algorithms to create intelli-
gent machines for sensory processing, cognitive science, nano-
bots, and brain-computer interfaces.

7. Conclusion

Herein, we aim to inform researchers about newly developed
neuromorphic devices and their potential future real-world appli-
cations. To move from exploratory research to the systematic
selection and improvement of the most viable options in neu-
roscience, researchers must have a comprehensive understanding
of the integration of device manufacturing with AI. Embracing
new ideas in neuromorphic computing is essential for fully
utilizing nanotechnology in neuromorphic systems and devices
and for gaining extraordinary insight into the physiology of the
human brain, driven by the rapidly expanding body of

Fig. 14 Research gaps that exist in the recently developed neuromorphic devices.
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neuroscience research. We present the learning rules and algo-
rithms used in the neuromorphic systems. Additionally, future
research should focus on spike-based neurosystems that are
currently trending. Finally, creating engineering approaches that
stimulate inherent developmental processes is essential for
addressing the challenges mentioned above, although success is
not guaranteed. Nevertheless, one can overcome the limitations of
neuromorphic science and engineering by aiming for a more
positive approach.

Ethical approval

This article does not include any studies with human partici-
pants or animals performed by any of the authors.

Consent of publication

All authors provided consent for publication.

Data availability

No primary research results, software or code have been
included and no new data were generated or analysed as part
of this review.

Conflicts of interest

The authors declare no competing interests.

Acknowledgements

Hongyun So is grateful for financial support from the National
Research Foundation of Korea (NRF), funded by the Ministry of
Science and ICT of the Republic of Korea (No. NRF- RS-2024-
00359316 and RS-2023-00260527).

References

1 S. H. Woolf, D. A. Chapman, J. H. Lee, K. C. Johnston,
R. T. Benson, E. Trevathan, W. R. Smith and D. J. Gaskin,
Neurology, 2023, 101, 9–16.

2 V. L. Feigin, T. Vos, E. Nichols, M. O. Owolabi,
W. M. Carroll, M. Dichgans, G. Deuschl, P. Parmar,
M. Brainin and C. Murray, Lancet Neurol., 2020, 19,
255–265.

3 R. Murrell, Neuropsychol. Rev., 1999, 9, 209–229.
4 M. Jakovcevski and S. Akbarian, Nat. Med., 2012, 18,

1194–1204.
5 R. S. Klein, C. Garber and N. Howard, Nat. Immunol., 2017,

18, 132–141.
6 N. K. Upadhyay, H. Jiang, Z. Wang, S. Asapu, Q. Xia and

J. Joshua Yang, Adv. Mater. Technol., 2019, 4, 1800589.
7 C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell,

P. Date and B. Kay, Nat. Comput. Sci., 2022, 2, 10–19.
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53 N. Gong, T. Idé, S. Kim, I. Boybat, A. Sebastian,
V. Narayanan and T. Ando, Nat. Commun., 2018, 9, 2102.

54 M. Naqi, Y. Cho, A. Bala and S. Kim, Mater. Today Electron.,
2023, 5, 100052.

55 Y. Fathy, P. Barnaghi and R. Tafazolli, IEEE Syst. J., 2019,
13, 2688–2699.

56 U. Satija, B. Ramkumar and M. S. Manikandan, IEEE Rev.
Biomed. Eng., 2018, 11, 36–52.

57 A. Amedi, K. von Kriegstein, N. M. van Atteveldt,
M. S. Beauchamp and M. J. Naumer, Exp. Brain Res.,
2005, 166, 559–571.

58 S. Molholm, Cereb. Cortex, 2004, 14, 452–465.
59 F. Zhou, Z. Zhou, J. Chen, T. H. Choy, J. Wang, N. Zhang,

Z. Lin, S. Yu, J. Kang, H.-S. P. Wong and Y. Chai, Nat.
Nanotechnol., 2019, 14, 776–782.

60 S. Park, Y. Jeong, H.-J. Jin, J. Park, H. Jang, S. Lee, W. Huh,
H. Cho, H. G. Shin, K. Kim, C.-H. Lee, S. Choi and S. Im,
ACS Nano, 2020, 14, 12064–12071.

61 H. Shim, S. Jang, A. Thukral, S. Jeong, H. Jo, B. Kan,
S. Patel, G. Wei, W. Lan, H.-J. Kim and C. Yu, Proc. Natl.
Acad. Sci. U. S. A., 2022, 119, e2204852119.

62 Y. Guo, F. Wu, G. Dun, T. Cui, Y. Liu, X. Tan, Y. Qiao,
M. Lanza, H. Tian, Y. Yang and T. Ren, Adv. Funct. Mater.,
2023, 33, 2208055.

63 A. Peters and S. L. Palay, J. Neurocytol., 1996, 25, 687–700.
64 A. E. Pereda, Nat. Rev. Neurosci., 2014, 15, 250–263.
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6271–6277.

118 G. Vats, B. Hodges, A. J. Ferguson, L. M. Wheeler and
J. L. Blackburn, Adv. Mater., 2023, 35, 202205459.

119 H. Lee, Y. Won and J. H. Oh, J. Polym. Sci., 2022, 60,
348–376.

120 J. Y. Kwon, J. E. Kim, J. S. Kim, S. Y. Chun, K. Soh and
J. H. Yoon, Exploration, 2024, 4, 20220162.

121 S. R. Forrest, Nature, 2004, 428, 911–918.
122 R. Bhunia, J. S. Kim, H. Kweon, D. J. Kim and D. H. Kim,

Mater. Chem. Phys., 2022, 287, 126227.
123 M. Di Lauro, A. De Salvo, G. C. Sebastianella, M. Bianchi,

S. Carli, M. Murgia, L. Fadiga and F. Biscarini, ACS Appl.
Electron. Mater., 2020, 2, 1849–1854.

124 K. Janzakova, I. Balafrej, A. Kumar, N. Garg, C. Scholaert,
J. Rouat, D. Drouin, Y. Coffinier, S. Pecqueur and F. Alibart,
Nat. Commun., 2023, 14, 8143.

125 S. Oh, H. Kim, S. E. Kim, M.-H. Kim, H.-L. Park and
S.-H. Lee, Adv. Intell. Syst., 2023, 5, 2200272.

Review Materials Horizons

Pu
bl

is
he

d 
on

 2
3 

7 
20

24
. D

ow
nl

oa
de

d 
by

 F
ai

l O
pe

n 
on

 2
02

5-
05

-0
7 

 8
:1

2:
30

. 
View Article Online

https://doi.org/10.1039/d4mh00522h


This journal is © The Royal Society of Chemistry 2024 Mater. Horiz., 2024, 11, 5181–5208 |  5205

126 W. Xu, S.-Y. Min, H. Hwang and T.-W. Lee, Sci. Adv., 2016,
2, e1501326.

127 M. M. H. Tanim, Z. Templin, K. Hood, J. Jiao and F. Zhao,
Adv. Mater. Technol., 2023, 8, 2202194.

128 Q. Lin, Z. Wang, M. Young, J. B. Patel, R. L. Milot, L. Martinez
Maestro, R. R. Lunt, H. J. Snaith, M. B. Johnston and
L. M. Herz, Adv. Funct. Mater., 2017, 27, 1702485.

129 X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang,
Y. Wei, Y. Wu and H. Zeng, Small, 2017, 13, 1603996.

130 Q. Tian, R. Hong, C. Liu, X. Hong, S. Zhang, L. Wang, Y. Lv,
X. Liu, X. Zou and L. Liao, Nano Lett., 2022, 22, 494–500.

131 J. Choi, J. S. Han, K. Hong, S. Y. Kim and H. W. Jang, Adv.
Mater., 2018, 30, 1704002.

132 H. Patil, H. Kim, K. D. Kadam, S. Rehman, S. A. Patil,
J. Aziz, T. D. Dongale, Z. Ali Sheikh, M. Khalid Rahmani,
M. F. Khan and D. Kim, ACS Appl. Mater. Interfaces, 2023,
15, 13238–13248.

133 G. Feng, J. Jiang, Y. Zhao, S. Wang, B. Liu, K. Yin, D. Niu,
X. Li, Y. Chen, H. Duan, J. Yang, J. He, Y. Gao and Q. Wan,
Adv. Mater., 2020, 32, 1906171.

134 T. Q. Trung, A. Bag, L. T. N. Huyen, M. Meeseepong and
N. Lee, Adv. Funct. Mater., 2024, 34, 2309378.

135 C. Zhang, Y. Li, C. Ma and Q. Zhang, Small Sci., 2022,
2, 2100086.

136 K. Liao, P. Lei, M. Tu, S. Luo, T. Jiang, W. Jie and J. Hao,
ACS Appl. Mater. Interfaces, 2021, 13, 32606–32623.

137 C. Ban, Z. Zhang, C. Song, H. Zhang, X. Luo, X. Wang,
J. Liu, Z. Liu and W. Huang, Adv. Mater. Technol., 2023,
8, 2200870.

138 T. Mazur, P. Zawal and K. Szaciłowski, Nanoscale, 2019, 11,
1080–1090.

139 G. Chen, J. Seo, C. Yang and P. N. Prasad, Chem. Soc. Rev.,
2013, 42, 8304.

140 S. Kundu and A. Patra, Chem. Rev., 2017, 117, 712–757.
141 R. Yu, Q. Lin, S.-F. Leung and Z. Fan, Nano Energy, 2012, 1,

57–72.
142 L. Xu, S. Yuan, H. Zeng and J. Song, Mater. Today Nano,

2019, 6, 100036.
143 J. Ren, T. Li, X. Zhou, X. Dong, A. V. Shorokhov,

M. B. Semenov, V. D. Krevchik and Y. Wang, Chem. Eng.
J., 2019, 358, 30–39.

144 S. Yuan, Z.-K. Wang, M.-P. Zhuo, Q.-S. Tian, Y. Jin and
L.-S. Liao, ACS Nano, 2018, 12, 9541–9548.

145 W.-C. Chen, Y.-H. Fang, L.-G. Chen, F.-C. Liang, Z.-L. Yan,
H. Ebe, Y. Takahashi, T. Chiba, J. Kido and C.-C. Kuo,
Chem. Eng. J., 2021, 414, 128866.

146 S. Akin, Y. Altintas, E. Mutlugun and S. Sonmezoglu, Nano
Energy, 2019, 60, 557–566.

147 M. Leng, Y. Yang, K. Zeng, Z. Chen, Z. Tan, S. Li, J. Li,
B. Xu, D. Li, M. P. Hautzinger, Y. Fu, T. Zhai, L. Xu, G. Niu,
S. Jin and J. Tang, Adv. Funct. Mater., 2018, 28, 1704446.

148 Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou, L. Zhou, X. Chen
and S. Han, Adv. Mater., 2018, 30, 1802883.

149 Z. Chen, Q. Dong, Y. Liu, C. Bao, Y. Fang, Y. Lin, S. Tang,
Q. Wang, X. Xiao, Y. Bai, Y. Deng and J. Huang, Nat.
Commun., 2017, 8, 1890.

150 D. Hao, J. Zhang, S. Dai, J. Zhang and J. Huang, ACS Appl.
Mater. Interfaces, 2020, 12, 39487–39495.

151 J. Chen, D. Yang, F. Jhuang, Y. Fang, J. Benas, F. Liang and
C. Kuo, Adv. Funct. Mater., 2021, 31, 2105911.

152 E. Ercan, Y. Lin, W. Yang and W. Chen, Adv. Funct. Mater.,
2022, 32, 2107925.

153 G. K. Gupta, I.-J. Kim, Y. Park, M.-K. Kim and J.-S. Lee, ACS
Appl. Mater. Interfaces, 2023, 15, 18055–18064.

154 Y. R. Park and G. Wang, Adv. Funct. Mater., 2024,
34, 2307971.

155 U. Jung, J. Lim, S. Kim and J. Park, J. Alloys Compd., 2024,
972, 172771.

156 P. J. Gemperline, J. R. Long and V. G. Gregoriou, Anal.
Chem., 1991, 63, 2313–2323.

157 M. A. Soriano, F. Khan and R. Ahmad, IEEE Trans. Instrum.
Meas., 2020, 69, 6787–6794.

158 Y. Fang, Y. Zou, J. Xu, G. Chen, Y. Zhou, W. Deng, X. Zhao,
M. Roustaei, T. K. Hsiai and J. Chen, Adv. Mater., 2021,
33, 2104178.

159 Y. Tong, Z. Feng, J. Kim, J. L. Robertson, X. Jia and
B. N. Johnson, Nano Energy, 2020, 75, 104973.

160 L. Shu Fang, C. Y. Tsai, M. H. Xu, S. W. Wu, W. C. Lo,
Y. H. Lu and Y. K. Fuh, Nanotechnology, 2020, 31, 155502.

161 K. K. Kim, I. Ha, M. Kim, J. Choi, P. Won, S. Jo and
S. H. Ko, Nat. Commun., 2020, 11, 2149.

162 M. Wang, Z. Yan, T. Wang, P. Cai, S. Gao, Y. Zeng, C. Wan,
H. Wang, L. Pan, J. Yu, S. Pan, K. He, J. Lu and X. Chen,
Nat. Electron., 2020, 3, 563–570.

163 Y. Fang, J. Xu, X. Xiao, Y. Zou, X. Zhao, Y. Zhou and
J. Chen, Adv. Mater., 2022, 34, 2200252.

164 Y. Qiu, Z. Wang, P. Zhu, B. Su, C. Wei, Y. Tian, Z. Zhang,
H. Chai, A. Liu, L. Liang and H. Wu, Chem. Eng. J., 2023,
455, 140890.

165 M. Liu, Y. Zhang, J. Wang, N. Qin, H. Yang, K. Sun, J. Hao,
L. Shu, J. Liu, Q. Chen, P. Zhang and T. H. Tao, Nat.
Commun., 2022, 13, 79.

166 G. Li, S. Liu, L. Wang and R. Zhu, Sci. Rob., 2020, 5, eabc8134.
167 Z. Sun, M. Zhu, Z. Zhang, Z. Chen, Q. Shi, X. Shan,

R. C. H. Yeow and C. Lee, Adv. Sci., 2021, 8, 2100230.
168 X. Qu, Z. Liu, P. Tan, C. Wang, Y. Liu, H. Feng, D. Luo, Z. Li

and Z. L. Wang, Sci. Adv., 2022, 8, eabq2521.
169 Y. Wang, M. L. Adam, Y. Zhao, W. Zheng, L. Gao, Z. Yin

and H. Zhao, Nano-Micro Lett., 2023, 15, 55.
170 T. Sun, B. Feng, J. Huo, Y. Xiao, W. Wang, J. Peng, Z. Li,

C. Du, W. Wang, G. Zou and L. Liu, Nano-Micro Lett., 2024,
16, 14.

171 J. Xie, Y. Zhao, D. Zhu, J. Yan, J. Li, M. Qiao, G. He and
S. Deng, ACS Appl. Mater. Interfaces, 2023, 15, 12551–12559.

172 Z. Gao, Y. Song, T. Y. Hsiao, J. He, C. Wang, J. Shen,
A. MacLachlan, S. Dai, B. H. Singer, K. Kurabayashi and
P. Chen, ACS Nano, 2021, 15, 18023–18036.

173 S. Wanninger, P. Asadiatouei, J. Bohlen, C.-B. Salem,
P. Tinnefeld, E. Ploetz and D. C. Lamb, Nat. Commun.,
2023, 14, 6564.

174 L. Shan, Q. Chen, R. Yu, C. Gao, L. Liu, T. Guo and
H. Chen, Nat. Commun., 2023, 14, 2648.

Materials Horizons Review

Pu
bl

is
he

d 
on

 2
3 

7 
20

24
. D

ow
nl

oa
de

d 
by

 F
ai

l O
pe

n 
on

 2
02

5-
05

-0
7 

 8
:1

2:
30

. 
View Article Online

https://doi.org/10.1039/d4mh00522h


5206 |  Mater. Horiz., 2024, 11, 5181–5208 This journal is © The Royal Society of Chemistry 2024

175 G. Liu, W. Wen, Z. Zhao, X. Huang, Y. Li, M. Qin, Z. Pan,
Y. Guo and Y. Liu, Adv. Mater., 2023, 35, 2300242.

176 H. Wei, G. Yao, Y. Ni, L. Yang, J. Liu, L. Sun, X. Zhang,
J. Yang, Y. Xiao, F. Zheng and W. Xu, Adv. Funct. Mater.,
2023, 33, 2304000.

177 X. Wu, E. Li, Y. Liu, W. Lin, R. Yu, G. Chen, Y. Hu, H. Chen
and T. Guo, Nano Energy, 2021, 85, 106000.

178 M. Pei, Y. Zhu, S. Liu, H. Cui, Y. Li, Y. Yan, Y. Li, C. Wan
and Q. Wan, Adv. Mater., 2023, 35, 2305609.

179 Y. Sun, J. Li, S. Li, Y. Jiang, E. Wan, J. Zhang, Y. Shi and
L. Pan, Chip, 2023, 2, 100031.

180 F. Sun, Q. Lu, S. Feng and T. Zhang, ACS Nano, 2021, 15,
3875–3899.

181 R. Yuan, Q. Duan, P. J. Tiw, G. Li, Z. Xiao, Z. Jing, K. Yang,
C. Liu, C. Ge, R. Huang and Y. Yang, Nat. Commun., 2022,
13, 3973.

182 F. McGlone, J. Wessberg and H. Olausson, Neuron, 2014,
82, 737–755.

183 G. T. Meijer, P. E. C. Mertens, C. M. A. Pennartz, U. Olcese
and C. S. Lansink, Prog. Neurobiol., 2019, 174, 1–15.

184 D. D. Frank, G. C. Jouandet, P. J. Kearney, L. J. Macpherson
and M. Gallio, Nature, 2015, 519, 358–361.

185 H. H. Ehrsson, N. P. Holmes and R. E. Passingham,
J. Neurosci., 2005, 25, 10564–10573.

186 G. Gentile, A. Guterstam, C. Brozzoli and H. H. Ehrsson,
J. Neurosci., 2013, 33, 13350–13366.

187 D. Senkowski, D. Saint-Amour, M. Höfle and J. J. Foxe,
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A. Lansner, R. Schüffny, J. Schemmel and K. Meier, PLoS
One, 2014, 9, e108590.

212 O. Richter, C. Wu, A. M. Whatley, G. Köstinger, C. Nielsen,
N. Qiao and G. Indiveri, Neuromorphic Comput. Eng., 2024,
4, 014003.

213 C. Wang, X. Xu, X. Pi, M. D. Butala, W. Huang, L. Yin,
W. Peng, M. Ali, S. C. Bodepudi, X. Qiao, Y. Xu, W. Sun and
D. Yang, Nat. Commun., 2022, 13, 5216.

214 J. Wang, Q. Zhang, R. Chen, J. Li, J. Wang, G. Hu, M. Cui,
X. Jiang, B. Song and Y. He, Nano Today, 2021, 41, 101324.

215 L. Yang, H. Hu, A. Scholz, F. Feist, G. Cadilha Marques,
S. Kraus, N. M. Bojanowski, E. Blasco, C. Barner-Kowollik,
J. Aghassi-Hagmann and M. Wegener, Nat. Commun., 2023,
14, 1103.

216 Y. Wang, Y. Gong, S. Huang, X. Xing, Z. Lv, J. Wang,
J.-Q. Yang, G. Zhang, Y. Zhou and S.-T. Han, Nat. Commun.,
2021, 12, 5979.

Review Materials Horizons

Pu
bl

is
he

d 
on

 2
3 

7 
20

24
. D

ow
nl

oa
de

d 
by

 F
ai

l O
pe

n 
on

 2
02

5-
05

-0
7 

 8
:1

2:
30

. 
View Article Online

https://doi.org/10.1039/d4mh00522h


This journal is © The Royal Society of Chemistry 2024 Mater. Horiz., 2024, 11, 5181–5208 |  5207

217 S. Chen, Z. Lou, D. Chen and G. Shen, Adv. Mater., 2018,
30, 1705400.

218 Y. V. Pershin and M. Di Ventra, Phys. Rev. E: Stat., Non-
linear, Soft Matter Phys., 2011, 84, 046703.

219 G. Li, D. Xie, H. Zhong, Z. Zhang, X. Fu, Q. Zhou, Q. Li,
H. Ni, J. Wang, E. Guo, M. He, C. Wang, G. Yang, K. Jin and
C. Ge, Nat. Commun., 2022, 13, 1729.

220 W. Yi, K. K. Tsang, S. K. Lam, X. Bai, J. A. Crowell and
E. A. Flores, Nat. Commun., 2018, 9, 4661.

221 R. Yuan, P. J. Tiw, L. Cai, Z. Yang, C. Liu, T. Zhang, C. Ge,
R. Huang and Y. Yang, Nat. Commun., 2023, 14, 3695.

222 W. Wang, G. Pedretti, V. Milo, R. Carboni, A. Calderoni,
N. Ramaswamy, A. S. Spinelli and D. Ielmini, Sci. Adv.,
2018, 4, eaat4752.

223 C. Feng, B.-W. Li, Y. Dong, X.-D. Chen, Y. Zheng,
Z.-H. Wang, H.-B. Lin, W. Jiang, S.-C. Zhang, C.-W. Zou,
G.-C. Guo and F.-W. Sun, Sci. Adv., 2023, 9, eadg9376.

224 D. Farina, I. Vujaklija, M. Sartori, T. Kapelner, F. Negro,
N. Jiang, K. Bergmeister, A. Andalib, J. Principe and
O. C. Aszmann, Nat. Biomed. Eng., 2017, 1, 0025.

225 Y. H. Jung, B. Park, J. U. Kim and T. Kim, Adv. Mater., 2019,
31, 1803637.

226 X. Shi, H. Chen and X. Zhao, Multimedia Tools Appl., 2021,
80, 23297–23311.

227 W. Shi, Y. Guo and Y. Liu, Adv. Mater., 2020, 32, 1901493.
228 E. Dupont, J. Gomez and D. Bilodeau, Int. J. Cosmet. Sci.,

2013, 35, 224–232.
229 G. P. Pfeifer and A. Besaratinia, Photochem. Photobiol. Sci.,

2012, 11, 90–97.
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