Harnessing the Potential of Biphasic Solvent Systems in Lignocellulosic Biomass Fractionation through Computational Insights

Abstract

Biphasic solvent systems have emerged as a transformative approach for the efficient fractionation of lignocellulosic biomass (LCB), driving substantial progress in biofuel and biochemical production. By precisely partitioning lignin into the organic phase and hemicellulose into the aqueous phase while maintaining cellulose within the solid fraction, biphasic systems present a sophisticated and integrative strategy for LCB processing. This dual-phase approach achieves superior product separation and significantly enhances economic viability through the recyclability of solvents and catalysts. Several biphasic systems, including those employing 2-methyltetrahydrofuran, immiscible alcohol-based systems (butanol, pentanol, and phenoxyethanol), and ketones (Methyl isobutyl ketone), have been developed for LCB fractionation. Among these, immiscible alcohol-based systems have emerged as the most effective, demonstrating the ability to minimize cellulose degradation (1.0–30.0%) while optimizing the removal of hemicellulose (80.0–98.0%) and lignin (65.0–92.0%). The efficiency of these systems is largely due to strong hydrogen bonding interactions between the solvents-catalysts and xylan and lignin, which enhance effective extraction, as confirmed by mechanistic computational analyses. Other factors such as selective lignin dissolution, phase separation, low polarity, and energy-efficient recovery are also emphasized. This review indicates that immiscible alcohol-based methods achieve superior glucose yields following enzymatic hydrolysis (85.0–95.0%) at high solid loadings (10.0–13.0%). Sustainability assessments further emphasize the advantages of biphasic systems, predicting a reduced environmental footprint and improved economic feasibility relative to conventional methods. Integrating artificial intelligence techniques with these findings holds the potential to accelerate the industrial adoption of biphasic systems, optimizing process efficiency and reducing costs.

Supplementary files

Article information

Article type
Critical Review
Submitted
24 11 2024
Accepted
25 2 2025
First published
05 3 2025

Green Chem., 2025, Accepted Manuscript

Harnessing the Potential of Biphasic Solvent Systems in Lignocellulosic Biomass Fractionation through Computational Insights

M. Saleknezhad, M. Madadi, S. Al Azad and V. K. Gupta, Green Chem., 2025, Accepted Manuscript , DOI: 10.1039/D4GC05977H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements