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Abstract
Quantitative assessment of pore size and morphology is crucial in biomaterials design and 
evaluation, particularly hydrogels and scaffolds used in tissue engineering and drug delivery. 
In recent years, a growing number of studies have proposed or adopted automated image 
analysis tools to evaluate pore characteristics; however, the absence of standardised 
protocols, validation criteria, and consistent reporting practices has limited reproducibility 
and cross-study comparability. This perspective, for the first time, examines recent trends in 
automated pore size analysis in biomaterials research, highlighting commonly used 
algorithms, their implementation in image-based workflows, and their ability to resolve pore 
geometries in disordered materials. We discuss the influence of imaging dimension, 
resolution, algorithm assumptions, and image pre-processing on outcomes and highlight 
common challenges such as over-segmentation, user bias, and the misidentification of 
irregularly shaped pores. By drawing on selected examples from the literature, we illustrate 
both the strengths and limitations of current approaches and emphasise the need for 
transparent, standardised methodologies in the field.

Keywords: Biomaterials, pore size, mesh size, imaging, automated methods, machine 
learning, artificial intelligence

1. Introduction
Porous materials, particularly hydrogels and scaffolds, have widespread uses in biomedical 
applications where the pore structure is a key determinant of functionality.  The porosity, 
pore size distribution, and pore interconnectivity of these materials influence critical 
properties such as mechanical strength, degradation rate, fluid transport, and biological 
interactions1–5. Accurate pore characterisation is essential for optimising biomaterials for 
applications such as tissue engineering (affecting cellular adhesion, proliferation, and 
differentiation6,5,7,8), drug delivery (affecting release kinetics9,10), and biosensing (affecting 
molecular diffusion and sensor performance11). 
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In hydrogel-based materials, mesh size (the space between crosslinking sites in polymer 
chains) and mesh radius (size of largest spherical solute that could move through a mesh 
portal) governs mechanical properties and permeability of the material, whereas pore size 
(the voids within e.g. hydrogel network or scaffold) plays a crucial role in cellular infiltration, 
nutrient diffusion, and tissue regeneration1,5,7,12–17. Hydrogels with small mesh sizes provide 
higher mechanical stability but may restrict cellular infiltration, whereas larger pores enhance 
cell migration and diffusion but can compromise mechanical integrity1,7,18. Similarly, 
scaffold-based biomaterials rely on optimised pore architectures to balance mechanical 
support with biological functionality1,5,8,19. 

Traditional methods for characterising pore structures, such as manual analysis from images 
are time-intensive, and are prone to over or under estimation of parameters, subjectivity and 
bias1,3,5,20,16. These methods often fail to provide comprehensive characterisation, particularly 
for hydrogels, which have hydrated and dynamic porous networks. While semi-automated 
approaches have been developed, limitations such as bias during user input, low sample sizes 
during verification steps and lack of accessibility to both software and sample measurement 
techniques has necessitated automation3,5,20,21. As a result, there has been an increase in 
adopting automated pore analysis techniques that utilise advanced image processing and 
artificial intelligence (AI) algorithms1,10,20,22–24. Automated segmentation and feature 
extraction enable high-throughput, reproducible, and quantitative analysis of pore 
architectures across various length scales25. Furthermore, automated models can enhance 
image contrast, remove noise, and classify pore structures with minimal human intervention7.

Numerous studies in the literature develop and/or use automated methods for pore size 
analysis. However, in the absence of standardised methodologies, reporting guidelines, or 
benchmarking criteria, comparison across different materials becomes challenging. It is 
therefore important to evaluate studies from the current literature to illustrate such limitations 
and strengths. This perspective is, to our knowledge, the first to provide a focused and critical 
evaluation of automated pore size analysis methods as applied to biomaterials such as 
hydrogels and porous scaffolds. We explore various automated approaches used to quantify 
pore characteristics from images recorded using direct two- dimensional (2D) and three-
dimensional (3D) imaging methods, discuss the challenges associated with analysing 
disordered porous materials, and provide recommendations for future developments in 
automated pore analysis.

2. Background to Porous Materials

2.1 Defining Pores in Literature

The term "pore" is widely used across materials science but lacks a universal definition due 
to variations in material structures and measurement techniques. In biomaterials, a pore is 
generally defined as a void or cavity within a solid or gel matrix that facilitates fluid 
transport, gas diffusion, or cellular infiltration2,26. Pores can exist at multiple length scales, 
ranging from macropores (>50 nm), which promote cell migration and vascularisation, to 
mesopores (2-50 nm), which control molecular diffusion in drug delivery systems27.

In polymeric biomaterials, such as hydrogels, mesh size refers to the distance between 
crosslinking sites in polymer chains, mesh radius28 describes the voids within a polymeric 
network, while pore size2 is the area of void space within solid material where the structures 
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separating the void spaces (e.g. pore walls) consists of polymer bundles. The latter is the 
pores that can be visualised using images captured using various techniques. 

2.2 Classification of Materials Based on Pore Structure

Biomaterials exhibit a wide range of pore architectures ranging from cubic to irregular 
shaped as illustrated in Figure 1. They may present almost entirely of one type of pore 
architecture arranged in an ordered pattern and hence be categorised as ordered structures. 
Examples of this include silicas, metal–organic frameworks (MOF)s, Zeolites, and crystalline 
porous materials, and directly relevant to this perspective, ordered scaffolds29–34. These 
materials possess highly uniform and regularly spaced pores, making them ideal candidates 
for automated image analysis using segmentation, machine learning-based pattern 
recognition, and feature extraction35,36.

Alternatively, biomaterials may have a mixture of different pore architecture and/or irregular 
arrangement of pores and as such can be categorised as a disordered structure. It should be 
noted that not only the pore structure but also the pore walls may be variable across a 
disordered structure. Disordered structures such as disordered scaffolds8,16,18,19,37, 
hydrogels2,7,13,38–40 and fibrous networks8,17,24,25,39,41–44 are examples of this and they are 
comprised of inherently irregular and porous architecture, making automated characterisation 
challenging. Automated methods, such as micro-computed tomography (micro-CT), 3D 
image reconstruction and AI-based segmentation models, have been used to analyse these 
architectures10,26.

Figure 1: 2D and 3D pore architectures in biomaterials. 
All images have been reproduced with permission.
A: Left: How a pore is defined in a 2D image2. Right: Graphical representation of pore size 
calculation and slices used in a 3D reconstruction45.
B: Left: 3D visualisation of pores detected as spherical bubbles: Orange depicts segmented 
collagen fibers and blue represents pores. Right: 2D visualisation (circles) of detected 3D 
bubbles in the left image, in an exemplary 2D image slice. Black depicts segmented collagen 
fibers, blue represents determined pores of a single analysis process, orange represents 
detected pores of a second residual analysis16.
C: Top left corner and centre: Scanning electron microscopy (SEM) images of salt leached 
and gas foamed scaffolds3. Top right centre:  Scanning electron micrograph of the 
microfluidic foaming poly(vinyl alcohol) (PVA) scaffold45. Top right corner: FESEM images 
of electrospun poly(l-lactic acid)-co-poly(ɛ-caprolactone)-Gelatin (PLACL/Gel) nanofibers37. 
Bottom left corner:  SEM micrographs of a PCL scaffolds produced by bioextrusion15. 
Bottom left centre: Micro-CT 2D section of a collagen-based composite scaffold46. Bottom 
right centre: Confocal fluorescence microscopy image of a collagen network47. Bottom right 
corner: SEM image of an agarose hydrogel2.
D:  3D bubble method applied to an in silico fibrin gel. Left: Red spheres represent the 
largest 3D bubbles that can be optimally fit in the pore zones of the gel and produce their 
maximum filling. Right:  Zoom of a single sphere touching four different fibers17.
E:   Left: Synchroton micro-CT image of a bioactive glass scaffold. Right: Pores within the 
scaffold identified by image analysis algorithms48.

This perspective primarily focuses on disordered porous materials, such as hydrogels and 
scaffolds, where variability in pore shape, size, and connectivity complicates standard pore 
characterisation techniques38.  However, understanding how automated methods have been 
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applied to ordered porous structures, such as mesoporous silica and MOFs, whether 
successfully or with limitations, facilitates their adaptation for more complex 
materials1,16,29,35. 

3. Automated Image Processing Techniques for Pore 
Analysis

3.1 2D and 3D Imaging Methods

A key distinction in pore analysis is between 2D and 3D imaging techniques, as each 
approach presents unique challenges and limitations (Figure 1C). Traditionally, pore size 
analysis relies on 2D imaging (Figure 1C), where threshold functions enhance pore or fiber 
structures, improving visibility and signal-to-noise ratio12,13,49. However, this method remains 
subjective due to a lack of benchmarking, reliance on user input, and qualitative 
assessment5,16. Additionally, factors such as resolution, background noise, and focus 
variations across imaging modalities can further impact accuracy5,16. These limitations have 
driven the development of more advanced, automated approaches.

A fundamental challenge of 2D pore analysis is its inability to capture the true three- 
dimensional pore architecture. For instance, scanning electron microscopy (SEM) images 
(literature examples provided in Figure 1C, 2F, 3C) captured using a high resolution 
technique have inherent limitations; including restricted planes of view due to fractured 
surfaces examined by SEM, minor pores being unclear or easily overlooked, challenges when 
imaging multilayered biomaterials, and lack of standardised protocols for improved 
robustness and limiting user-bias during pore quantification19,43,46,47. Circular or elliptical 
pore cross-sections in 2D may misrepresent actual 3D pore connectivity, requiring 
stereological or computational corrections17,19,20,50. Moreover, orientation dependence and 
sampling bias introduce further inaccuracies, particularly in fibrous or interconnected 
scaffold structures17,46. Pore shape is crucial, because unless specifically engineered to 
achieve a highly ordered shape, pores are irregularly shaped (Figure 1), thus physical or 
virtual sectioning anywhere other than where the pore diameter is maximum (Figure 1A) 
leads to an underestimation of pore size2,28,46. This is also influenced by the threshold chosen 
for the sample and imaging artefacts/tilts/curvatures, requiring filtering and segmentation to 
improve the accuracy of pore boundary determination50. While statistical sampling methods, 
such as unbiased stereology are used to approximate 3D characteristics, they may not be 
suitable for highly interconnected porous networks17. 

3D imaging techniques, such as micro-CT, confocal laser scanning microscopy (CLSM), 
transmission electron microscopy (TEM) tomography reconstruction and focused ion beam 
SEM (FIB-SEM), have been used for obtaining non-destructive, high-resolution information 
regarding pore morphology28,43,47 (Figure 1B, D, E, 2A, B, D, 3A, B). The convoluted data 
and naturally complex biological networks make manual data extraction from confocal 
images challenging, driving automation17. Furthermore, a resolution and volume 
interdependence for TEM tomography and FIB-SEM have been reported51.  Micro-CT 
(Figure 1E, 2B, 3A), in particular, enables quantitative assessment of porosity and 
connectivity, linking these parameters to material function20,47. Further, the technique allows 
virtual sectioning, visualisation in different planes and colour coded visualisation for 
improved comprehension46. However, the accuracy of 3D segmentation relies on grayscale 
differentiation and thresholding, which are often subjective and affected by environmental 
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factors such as lighting and computer monitor resolution and personal factors such as 
fatigue20,27. 3D methods often acquire repeated 'slices' of a 3D material, process them in a 2D 
format and aggregate to reconstruct the 3D image. Furthermore, the high cost and low 
accessibility of micro-CT, especially for nanometre level visualisation, computational 
intensity and data scarcity for machine learning-based 3D segmentation further complicate 
widespread adoption17,20,38,43,52. As noted by Mickel et al. ‘a generic definition (for pore size) 
and a robust method to extract pore sizes from experimental three-dimensional microscopy 
data sets have been lacking’53.

Regardless of imaging method, 2D or 3D, quality of the source image is a key determinant of 
the resultant pore size metrics, and in manual image analysis methods in particular, there is a 
trade-off between accuracy and time and effort47,52. Studies directly comparing 2D vs. 3D 
pore analysis have shown systematic discrepancies (% discrepancy) in extracted values, with 
2D methods often underestimating porosity and connectivity38,54. Given these challenges, 
hybrid approaches, combining stereological corrections with machine learning-assisted 3D 
reconstruction, are emerging as promising solutions52.

As we focus on direct 2D and 3D imaging techniques, the accuracy of pore quantification 
relies on automated image processing techniques that extract meaningful information from 
images. This section discusses the segmentation process (to isolate pores from the 
surrounding material) in Table 1, Box 1 and Table 2, and pore analysis techniques (to 
quantify pore characteristics) in Box 2 and Table 3. Given the complexity of porous 
materials, different approaches, ranging from thresholding-based methods to machine 
learning-driven segmentation10, have been developed to improve accuracy and 
reproducibility in pore characterisation1. It is important to note that the suitability of the 
algorithms will vary as a function of the considered biomaterial and imaging modality. 
Depending on the available equipment, the signal-to-noise ratio and contrast, separation of 
background and specimen and image resolution will vary, changing the task difficulty, 
accuracy and consequentially the choice of segmentation and analysis approach47,54,55.

3.2 Segmentation: Extracting Pores from Images

Segmentation is the first step in automated pore analysis, where the material and pores are 
distinguished as separate entities. Examples of segmentation methods used in the literature 
are given in Figure 2. The choice of segmentation technique directly impacts the quality of 
extracted pore features and should be as close to ‘ground-truth’ as possible. Due to the range 
of imaging modalities and factors such as background lighting and noise, the choice of 
segmentation technique is imperative to effectively visualise pores. To evaluate segmentation 
success, an objective ‘ground-truth’ comparator is required. However, at the moment, 
‘ground-truth’ is frequently established through manual measurement and inter-rater 
reliability which introduces bias and is subject to fatigue effects for large sample sizes45,56. 
Due to the associated effort, reliance on automated segmentation and analysis approaches 
without ‘ground-truth’ validation is increasing46. Automated methods, including methods 
discussed below in Box 1, offer standardised, reproducible segmentation but may still 
misclassify features, over-segment noise or under-segment adjacent pores (Figure 2). While 
these methods are thus more time effective and objective than manual approaches, their lack 
of validation presents a new risk of bias27.  Hybrid approaches, combining automated 
segmentation with manual refinement, could be a balanced approach, however, would require 
pre-processing steps such as contrast enhancement and noise reduction (as outlined in Table 
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1) to improve the accuracy of pore boundary detection. Table 1 details several preprocessing 
steps to improve the efficacy of image-based segmentation and analysis.

Table 1. Examples of preprocessing steps in segmentation

Pre-processing 
Modality

Purpose Software for 
Implementation

Edge Detection Allows the separation of touching objects without 
specifying a subjective threshold52.

ImageJ / MatLab / 
OpenCV

Contrast 
Maximisation

Maximises the contrast between pores and walls or 
pores and the background to ease segmentation and 
analysis21.

ImageJ / MatLab / 
OpenCV

Despeckling Despeckling sweep removes all but the largest objects in 
a space. Despeckling sieve removes objects below a 
certain area or volume. Adaptable for 2D or 3D space57.

ImageJ

Morphological 
Operations

Operations that can analyse and modify image shapes 
and structures. Can also be implemented for noise 
removal and feature extraction18,19,21,24,45,52,54.

Image J / MatLab / 
Quanfima python 
package24

Gaussian Blur A technique to smooth an image by averaging pixel 
values within a Gaussian window, effectively reducing 
noise58,59.

ImageJ / MatLab / 
OpenCV / Scikit – 
image package for 
python

Anisotropic 
Diffusion 
Filtering

Reduces noise while preserving edges by allowing 
diffusion to occur primarily in homogenous regions60.

ImageJ / MatLab / 
MedPy Python 
Package

Mean / Median 
Filtering

Reduces noise by replacing each pixel’s value with the 
mean or median value of the surrounding pixels12,19,25.

ImageJ / MatLab / 
SciPy Python 
Package / OpenCV

In Box 1, we outline a range of (semi-)automated segmentation approaches. Thresholding is 
the simplest and most widely used segmentation technique, where pixels are classified as 
either pore or material, based on intensity values (Figure 2). Thresholding-based 
segmentation is computationally efficient but may struggle with detecting intricate pore 
networks, particularly in fibrous or highly porous materials43. Additionally, it may yield 
variable results due to user-defined parameters and a lack of benchmarking20,27. Machine 
learning (ML) techniques, both shallow learning (e.g., support vector machines, decision 
trees) and deep learning (e.g., convolutional neural networks (CNN), U-Net models), can be 
used for pixel-wise classification in pore segmentation5,20,61–63,39. However, machine learning 
is data-hungry, thus requiring larger sample sizes and manual ‘ground-truth’ labelling which 
is labour intensive and may introduce user-bias into the segmentation process. 

Box 1: Segmentation Approaches

📌 Thresholding-Based Approaches

• Global Thresholding: A single threshold is applied across the entire image, 
making it suitable for materials with uniform contrast but less effective for 
heterogeneous structures3,47,64–66,56,21,1,38,8,67,43,52. These techniques are also more 
sensitive to noise68. Some examples of global thresholding methods are given 
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below, more methods and an in-depth discussion on thresholding could be found 
through Rajagopalan et al.27

o Otsu’s Global Thresholding: Selects an optimal segmentation threshold by 
maximising inter-class variance. This method is effective for materials with 
bimodal intensity distributions, where pores and solid structures have 
distinct grayscale values19,67,69.

o Entropy-Based Thresholding: The foreground and background are treated 
as separate sources and the optimal threshold is chosen at the maximum of 
the sum of the two class entropies. This is useful for images with complex 
histograms24,27,45.

o Histogram Thresholding: Analysing the concavity points of the image’s 
histograms convex hull. Any valley may be considered as potential 
threshold with the deepest concavities being favoured27,70. 

• Local (Adaptive) Thresholding: The threshold varies across different regions, 
allowing segmentation in images, in which contrast changes due to uneven 
illumination or varying material densities. This is useful for heterogenous 
structures16,20,25,54,71. Several local thresholding techniques exist as outlined by 
Rajagopalan et al.27.

• Contrast Enhancement with Fourier Transform: Fourier-based contrast 
enhancement has been integrated to improve edge detection in biomaterial samples, 
particularly in scaffold imaging5.

• Manual Thresholding in ImageJ: Adjusting the threshold manually to match 
original image features, as seen in some studies1,72–76. This technique can introduce 
various problems associated with room lighting, fatigue of the operator and limited 
grey-scale shade perception27.

• MATLAB-Optimised Thresholding:
o Region-Growing and Edge-Detection Algorithms: Allows for adaptive 

thresholding, enhancing pore segmentation in fibrous and highly 
interconnected structures77,52.

o Gradient Filters: Improve thresholding accuracy by refining intensity 
distributions, minimising over-segmentation errors78,79

• Watershed-Based Segmentation: The watershed algorithm is a region-based 
segmentation technique that treats an image as a topographic surface, where intensity 
variations correspond to elevations. It is useful for segmenting complex pore structures 
in porous materials by identifying watershed lines that separate adjacent regions. 
Following initial segmentation, the watershed algorithm refines pore boundaries by 
treating intensity gradients as a height map. By simulating the flooding of an image, it 
effectively separates adjacent pores that may have been grouped together in 
thresholding-based segmentation. While this method enhances segmentation accuracy, 
it may require post-processing to address over-segmentation18,19,43,45,48,66,80. 
MATLAB-based implementations of the watershed algorithm further improve pore 
segmentation accuracy through gradient-based seed point refinement43. 

o Gradient-Based Watershed: Uses the gradient magnitude image to detect 
high-intensity ridges that define the segmented boundaries24.

o Marker-Controlled Watershed: Introduces predefined seed points to prevent 
over-segmentation, which is beneficial for fibrous or highly interconnected 
porous materials20,66,43.
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o 3D Watershed for Pore Connectivity: Applied in voxel-based 3D 
reconstructions to quantify pore interconnectivity in porous 
scaffolds18,19,43,66,48,81,80.

📌 Machine Learning-Based Pixel Classification

• Shallow ML Models: Shallow learners struggle to classify raw image input and 
depend on efficient preprocessing and predefined, representative characteristics such as 
intensity and edges.27.

• Deep Learning Models: Deep learning models have demonstrated enhanced 
performance in segmenting irregular and disordered pore architectures, particularly in 
hydrogels and scaffolds10,62,63. CNNs and U-Net architectures learn hierarchical 
representations from large datasets, allowing robust segmentation of complex pore 
structures5,20 . These model are capable to automatic feature selection and extraction, 
enhancing contrast in low-resolution porous material and removing the need for manual 
tuning62. Furthermore, advanced machine learning techniques improve segmentation 
across multiple imaging modalities, making them adaptable to various pore 
architectures61. One problem with deep learning models is their data hungry nature, 
requiring large, annotated datasets for successful training and prevention of overfitting.
o CNN-Based Approaches: The convolutional nature of CNN’s enables multi-scale 

feature extraction, which improves segmentation accuracy, enhances pore boundary 
detection and reduces errors in low-contrast regions63. The hierarchical nature of 
CNNs refines pore morphology, effectively distinguishing pores from material 
phases. Pretrained CNN models, such as VGG16 and ResNet, further accelerate 
adaptation by reducing the need for large, manually annotated training sets, while 
transfer learning enhances model generalisability across different biomaterial types, 
ensuring consistent segmentation accuracy61,62.

o U-Net Architecture Approaches: Provide pixel-wise segmentation, making them 
particularly effective for highly interconnected porous biomaterial. Their encoder-
decoder structure allows for detailed feature extraction, while skip connections 
preserve fine-grained pore structures, significantly improving segmentation 
accuracy. Furthermore, data augmentation techniques enhance model robustness, 
compensating for limited training datasets and increasing adaptability across 
various biomaterial imaging conditions5,61

The following software given in Table 2 include modalities for different segmentation 
techniques. It is important to note that many studies utilise in-house, tailor-made code to 
conduct segmentation, that best befits their requirements. 

Table 2. Examples of some readily available segmentation software.

Software Built-In Segmentation
SPIP82–84 Intensity-based thresholding.
PoreSpy85–88 Watershed segmentation, deep-learning for pixel-wise 

classification.
Insight Toolkit (ITK) 
80,89

Otsu and binary thresholding, watershed segmentation.
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Thermo Fisher 
Porometric Software90

Gradient-based and marker-controlled watershed methods for 
segmentation refinement.

MIPAR42,91 Multiple threshold, watershed and deep learning-based 
methods. 

Mathematica38,92,93 Adaptive and histogram threshold, various watershed 
analyses.

Both threshold and machine learning-based approaches offer unique advantages to image 
segmentation with neither demonstrating consistently better performance albeit machine 
learning offers faster computation time. The choice of segmentation technique directly 
influences measures of porosity and pore structures, and the careful validation of image-
based pore data remains crucial45,64,94.

Figure 2: Examples of segmentation methods. 
All images have been reproduced with permission.
A: 3D collagen network binarisation method. Left: Representative image cube of a 5(6)-
Carboxytetramethylrhodamine N-succinimidylester (TAMRA)-labelled collagen scaffold. 
Right: A representative 2D slice of original image data, Otsu’s thresholding, adaptive local 
thresholding of a denoised and the final segmentation result16.
B: An unthresholded, undespeckled section of a micro-CT image of a collagen scaffold, 
demonstrating the noise which can be present in this type of data. Top right: Shows collagen 
in white, with the noise manually removed. Black represents void. Bottom right: shows the 
isolated noise, seen as light grey specks57.
C: Overview of how the DiameterJ algorithm analyses fiber diameter and other scaffold 
properties56.
D: Top left: CLSM images of nanomicrofiber scaffolds. Top right: filtered with median 3D. 
Bottom left: binarised. Bottom right: 3D reconstructed with Avizo Fire software43.
E: Top: Binarised image of a PVA scaffold. Bottom: Separation of pores using the watershed 
algorithm45.
F: Effect of pixel intensity threshold, K, on pore identification and resulting effect on pore 
size of scaffolds3.

3.3 Pore Analysis: Techniques for Quantification

Once segmentation is complete, various pore analysis techniques are employed to quantify 
structural parameters such as pore size distribution, shape, and connectivity. Below, in Box 2, 
we examine some commonly used automated approaches of quantifying pore size. In 
addition, Table 3 provides an overview of some pore-analysis software packages and their 
respective capabilities with regard to pore size determination. While some software maybe 
more commonly used, others maybe at an emerging level. The outcome of analysis may 
differ depending on software choice (Figure 3). 

Box 2: Pore Analysis Approaches

📌 Basic Metrics from Segmentation
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• Pore-to-Material Ratio: The fraction of pore area relative to material area, 
expressed as a decimal or percentage. This is calculated using tools such as ImageJ 
or FiJi, which is useful for assessing porosity, however, lacks structural 
context77,95,67,96,24,64 .

• Pore Count: The total number of detected pores; limited when pores are irregular 
or overlapping. Suited for homogenous structures.5,21.

• Pore Area Distribution: Captures variability in pore sizes; however, segmentation 
errors can skew results6,21,45,59,67,77.

📌 Advanced Pore Analysis Techniques

Pixel-Based Approaches

• Exponential Decay Fit to Pore Pixel Spacing Distribution: Quantifies the spatial 
arrangement of pores by fitting an exponential decay model to the pore-pixel 
spacing distribution27. This approach helps distinguish between homogeneous 
(evenly distributed pores) and heterogeneous (randomly distributed or clustered 
pores) porous networks.

• Fourier Transform Analysis: Used to detect periodicity in pore spacing, Fourier 
analysis can reveal structural anisotropy within porous scaffolds and 
hydrogels71,36,77,97.

• Skeletonisation-Based Analysis: By reducing pore structures to their one-
dimensional (1D) medial axis, this approach allows for measuring pore branching, 
interconnectivity, tortuosity and transport pathways in porous biomaterials 
scaffold19,56,98,38.

Geometric Transform-Based Methods

• Maximum Covering Radius Transform (CRT): The CRT method determines the 
largest inscribed circle within each pore, quantifying local pore size variations 
across a sample55,46,66,99,100.

• Morphological Opening and Closing Transformations: These operations refine 
pore boundaries by removing small artifacts and enhancing true pore structures, 
aiding in more accurate segmentation47,65,18,16,1,19,54,66. For instance, connected pores 
can be separated using morphological dilation followed by erosion—dilation 
shrinks the pores by expanding scaffold boundaries, and erosion then restores pore 
size while maintaining separation1.

• Voxel-Based Pore Size Distribution (PSD) Reconstruction: 3D voxel 
reconstruction has been used to quantify PSDs, for improved interconnectivity 
analysis4,38,56,66,67.

• Fourier-Based Feature Extraction for Pore Shape: Fourier-based shape analysis 
has been integrated into voxel-based reconstructions to improve pore morphology 
quantification5.

Pore Fitting Methods

• Sphere/Circle Fitting: Pore fitting methods are based on fitting a circle or a sphere 
to a pore, based on criteria such major diameter (MD, major diameter of analysed 
pore), mean thickness (MT, based on circle-fitting algorithm similar to sphere-
fitting method), biggest inner circle diameter (BICD, diameter of the biggest circle 
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that fits the pore) and area-equivalent circle diameter (AECD, diameter of the circle 
with an equivalent area to that of the pore) 12,46,65,66,48,67,99,101,97,45. Ideally well suited 
for circular pores1.

• Bubble Analysis: Bubble analysis is a geometric method that mimics fluid 
dynamics in fibrous networks and is based on the largest possible circle inside a 
pore that touches three surrounding fibers16,17,46,53, however, according to Fischer et 
al. may not fully account for the residual fluid volume16. In an article-response 
dynamic, Molteni et al. proposed an algorithm that randomly seeds a pore and 
expands its boundary until it tangentially contacts three fibers17, for which Münster 
& Fabry developed a simplified approach using Euclidean distance mapping to 
detect local maxima, identifying the largest pore regions102. However, Molteni et al. 
argued that this method lacks filtering and requires additional post-processing to 
remove overlapping pores and those that do not satisfy the three-fiber contact 
criterion103. Applicable to fibrous networks such as bundled F-actin, fibrin, 
cytoskeletal filament networks, given individual fibers can be resolved53. 

• Destroy and Rebuild Method for PSD Analysis:
This micro-CT-based technique reconstructs 3D pore networks from 2D slice data, 
offering an alternative to direct segmentation-based methods. ImageJ’s particle 
analyser (PA) function extracts mass centre coordinates (Xc, Yc) and pore section 
areas for each binarised slice. An algorithm groups sections by spatial proximity, 
assuming pores maintain a spherical shape. Edge-affected pores are removed, and 
equivalent volume and radius are calculated for each pore to determine the 
PSD5,45,56 In addition, MATLAB-based PSD reconstruction methods have been 
applied to improve accuracy in volume estimations of irregularly shaped pores77.

Table 3. Examples of commonly used pore-analysis software.

Software Built-In Analysis
SPIP82–84

MIPAR42,91

Sigma Scan Pro 596,104

Materialise Mimics65

CTAn (Bruker) 46,105,106

Quanfima24

Image-Pro Plus107–110  

1. Pore size distribution
2. Interconnectivity, and transport pathways
3. Quantification using geometric fitting methods
4. Skeletonisation
5. Voxel-based analysis

79–82 Enhances pore network characterisation with skeletonisation-
based metrics.

GeoDict44 CRT and micro-CT-based PSD reconstruction.
Amira (TGS, San Diego, 
CA)19,111

Skeletonisation.

ImageJ Plugin 
DiameterJ24,41,56

Measure porosity of fibre networks.

ImageJ Plugins ND112 Measure porosity of scaffolds.
ImageJ – Plugins 
BoneJ56,99

Measure porosity of bone structures.

PoreVision20 Pore size analysis including measurement, distribution and 
range. Morphological analysis.

Page 11 of 28 Journal of Materials Chemistry B

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
B

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
7 

20
25

. D
ow

nl
oa

de
d 

on
 2

02
5-

07
-2

4 
 9

:5
3:

32
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5TB00848D

https://www.imagemet.com/products_/spip/features/particle_analysis_in_images/
https://www.manula.com/manuals/mipar/user-manual/latest/en/topic/getting-started
https://gades-solutions.com/project/sigmascan-pro/
https://www.materialise.com/en/healthcare/mimics/ai-enabled-segmentation
https://www.bruker.com/en/products-and-solutions/preclinical-imaging/micro-ct/3d-suite-software.html
https://quanfima.readthedocs.io/en/latest/
https://mediacy.com/image-pro/
https://www.math2market.com/index.html
https://www.thermofisher.com/ie/en/home/electron-microscopy/products/software-em-3d-vis/amira-software/cell-biology.html?cid=msd_vds_ls_none_amr_123456_gl_pso_gaw_escchz&gad_source=1
https://www.thermofisher.com/ie/en/home/electron-microscopy/products/software-em-3d-vis/amira-software/cell-biology.html?cid=msd_vds_ls_none_amr_123456_gl_pso_gaw_escchz&gad_source=1
https://imagej.net/plugins/diameterj
https://imagej.net/plugins/diameterj
https://github.com/sedmorteza/ND
https://imagej.net/plugins/bonej
https://imagej.net/plugins/bonej
https://www.mdpi.com/2310-2861/11/2/132#:~:text=Two%2Ddimensional%20image%2Dbased%20analyses,obtained%20from%20commonly%20available%20microscopy.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5tb00848d


Figure 3: Examples of automated pore size determination methods. 
All images have been reproduced with permission.
A: Quantification of 3D pore networks of sol–gel derived bioactive glass foams from micro-
CT data: (a) 2D slice of raw data, (b) 2D slice showing application of the dilation algorithm, 
(c) 2D representation of pores derived from the watershed algorithm, (d) 3D image of 
identified pores, (e) 3D image of the interconnects obtained from the top down algorithm, 
and (f) demonstration of the bounding box method of measuring the interconnect length19. 
B: Illustration of pore size determination of alginate hydrogel microcapsules using TEM 
images. Image A depicts a hydrogel as it is typically observed using transmission electron 
microscopy. Image B shows the results of the image segmentation after binarisation. Image C 
shows the result of a Euclidean distance transformation. Image D gives an overlay of the pore 
region image skeleton (red lines) with the original image. Image skeletons are one-pixel wide 
center axes. They are defined via the set of inner pore pixels. The set is defined via local 
distance maxima with respect to alginate segments38.
C: Fiber network diameter determination of scaffolds (opposite of pore size determination, 
using similar algorithms). Top left: starting SEM image. Top centre: image histogram 
equalsation followed by 3 by 3 median filtering. Top right: local thresholding through Otsu 
method. Middle left: thinning, smoothing and removal of isolated pixel areas through a 
cascade of different morphological operators. Middle center: skeletonization. Middle right – 
Bottom left: binary filters for Delaunay network refinement. Bottom center: modified 
Delaunay network associated to the real fiber network. Bottom right: final network and fiber 
diameters detected25.
D: Simplified bubble analysis of the pore space of a random biopolymer network in two 
steps. Left: first, the Euclidean distance map (EDM) of the fluid space of the network 
structure is computed (shades of gray (colours online) indicate the distance of each fluid pixel 
to the nearest fiber pixel). (Black) Fibers. Second, the local maxima of the EDM (white 
crosses) determine the centres of all 2D bubbles. To avoid bubbles of similar size in close 
proximity, the EDM was smoothed with a 5 × 5 Gaussian kernel with a sigma of one before 
the local maxima were determined. (Inset) A local maximum of the EDM (red circle) is a 
pixel whose eight neighbours all have smaller values. Right: Resulting 2D bubbles (black 
circles) fit into the pore zones of the fiber structure (black). (Red crosses) Bubble centers102. 
E: Comparison of detected pores with cutoff values of 85 vs. 120 in Chitosan-gelatin cryogels 
using PoreVision software. Red outlines are pores outside the analysis boundary, blue 
outlines are pores removed for being too small (most likely dust, cracks, or folds), and green 
outlines are identified pores20.
F: Illustration of varying results provided by micro-CT 2D pore size analysis of collagen-
based scaffolds. Pores (in gray) of 3 differing shapes (left, centre, right) were evaluated by 
means of 4 micro-CT 2D parameters (MT—mean thickness, MD—major diameter, BICD—
biggest inner circle diameter, AECD—area-equivalent circle diameter) and their values are 
presented in panels below the images (in mm). The results tend to differ with increasing 
shape irregularity46.
G: Colour map and pixel intensity based measurement of macro pore size distribution in a 
polymeric scaffold21.

4. Summary, Recommendations and Future Directions
Automated pore size analysis in biomaterials remains a field of active development, with 
several challenges and opportunities ahead. A persistent issue is the control of measurement 
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error, which can arise at multiple stages of the workflow, from image acquisition to 
segmentation and feature extraction, ultimately affecting data reliability.

Imaging quality—including resolution, magnification, and field of view—strongly influences 
the accuracy of segmentation and measurement methods. Poor image quality or insufficient 
resolution often leads to inconsistent or inaccurate pore size detection, particularly in fibrous 
or highly irregular networks41,47.

Circle-fitting algorithms can be useful for regular, isotropic materials with well-defined, 
circular pores, but often over- or underestimate pore sizes in more complex biomaterials. 
Many image analysis tools still depend on manual thresholding, subjective filtering, or 
operator bias, particularly when the software allows for interactive selection or exclusion of 
pores during post-processing20. While software such as DiameterJ and PoreSpy offer user-
friendly platforms, their results are sensitive to image parameters, such as pixel size and 
contrast depth, and sometimes require subjective validation41.

Importantly, there is no universal standard or pipeline for PSD analysis that suits all 
materials. Algorithms often need to be tailored to specific scaffold morphologies. 
Nevertheless, some methods demonstrate cross-material applicability, successfully analysing 
electrospun meshes, hydrogels, and decellularised tissues with the same underlying 
algorithm25.

A growing concern in the literature is the lack of detailed reporting on how PSD is computed. 
Some studies present PSD values without any or very limited mention of segmentation 
methods, threshold settings, or image pre-processing steps, and many studies cite ‘in-house 
algorithms’ without sufficient detail or provided code18,20,24,41. This hampers reproducibility 
and impedes method comparison while inconsistency in terminology increases the entry 
barrier to the field. Moreover, claims of “fully automated” analysis often mask semi-
automated steps that introduce bias, such as filtering out overlapping or irregular pores 
without objective criteria41. Closely related to this is the inconsistency across reported 
metrics, with many studies failing to report objective evaluations of the PSD methodology. 

Most current approaches rely on unsupervised learning methods without a reference standard 
or ‘ground-truth’, which makes performance evaluation difficult. Many studies rely on 
qualitative validation (visual matching) rather than reporting consistent quantitative metrics 
such as measurement error or precision. When validation is provided, it is often inconsistent 
or non-comparable across studies20. This may be partially attributed to the lack of available 
‘ground-truth’ values, which makes the implementation of supervised learning challenging. 
However, while the manual measurement of pore size is difficult and includes human error, 
studies should aim to validate proposed automated methods using ‘ground-truth’ 
measurements to ascertain the reliability of the selected methods. 

Closely related is a need for reporting objective evaluation metrics of automated methods. 
While the lack of ‘ground-truth’ complicates the implementation of supervised learning, steps 
should be taken to evaluate algorithms in the absence of a ‘true’ value. While some studies 
have implemented algorithm validation using standard reference images1, others compare 
results between methods to establish mean performance and improve reliability of findings. 
While several supervised and unsupervised evaluation methods thus exist, many studies 
continue to accept pore size estimation at face value without considering the associated bias 
of the measurement tool. Future studies should aim to conduct critical evaluation of their 
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estimation techniques and in the absence of an objective ‘ground-truth’ should at the very 
least compare the performances of different algorithms. 

There is also limited ability among automated algorithms to handle irregularly shaped or 
anisotropic pores. Many algorithms interpret elongated or eccentric pores as two or more 
circular pores, which misrepresents the actual pore size distribution35. While some algorithms 
have introduced shape classification features, their accuracy for small or faint shapes remains 
limited.

Looking ahead, a promising direction is the integration of machine learning and deep 
learning approaches trained on annotated datasets to improve pore recognition and 
classification accuracy. This includes the potential for algorithms that are not only shape-
aware but also context-aware—able to distinguish between artefacts and true pores based on 
their position, orientation, or relationship with surrounding structures.

We recommend the following:

• Standardised Reporting: All studies should include detailed information on 
segmentation algorithms, image processing steps, and evaluation metrics used in PSD 
analysis.

• Material-Specific Validation: Algorithms should be validated for specific scaffold 
types and pore morphologies, not assumed to be generalisable.

• Open-Source Development: Wider adoption of open-source platforms would 
promote reproducibility, comparability, and collaborative development.

• Integration of AI and ML: Supervised machine learning and AI-enhanced 
approaches could overcome current limitations in pore shape recognition, 
classification, and error quantification.

• Consistency in Evaluation: Future studies should report standard error metrics and 
comparison benchmarks to assess accuracy, ideally using both synthetic and real-
world datasets.

Ultimately, while automated PSD analysis is advancing rapidly, further work is needed to 
balance ease of use, reproducibility, and the ability to capture complex pore features across 
diverse biomaterials, including dynamic hydrogels and 4D scaffolds.
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Figure 1: 2D and 3D pore architectures in biomaterials. 
All images have been reproduced with permission.
A: Left: How a pore is defined in a 2D image2. Right: Graphical representation of pore size 
calculation and slices used in a 3D reconstruction45.
B: Left: 3D visualisation of pores detected as spherical bubbles: Orange depicts segmented 
collagen fibers and blue represents pores. Right: 2D visualisation (circles) of detected 3D 
bubbles in the left image, in an exemplary 2D image slice. Black depicts segmented collagen 
fibers, blue represents determined pores of a single analysis process, orange represents 
detected pores of a second residual analysis16.
C: Top left corner and centre: Scanning electron microscopy (SEM) images of salt leached 
and gas foamed scaffolds3. Top right centre:  Scanning electron micrograph of the 
microfluidic foaming poly(vinyl alcohol) (PVA) scaffold45. Top right corner: FESEM images 
of electrospun poly(l-lactic acid)-co-poly(ɛ-caprolactone)-Gelatin (PLACL/Gel) nanofibers37. 
Bottom left corner:  SEM micrographs of a PCL scaffolds produced by bioextrusion15. 
Bottom left centre: Micro-CT 2D section of a collagen-based composite scaffold46. Bottom 
right centre: Confocal fluorescence microscopy image of a collagen network47. Bottom right 
corner: SEM image of an agarose hydrogel2.
D:  3D bubble method applied to an in silico fibrin gel. Left: Red spheres represent the 
largest 3D bubbles that can be optimally fit in the pore zones of the gel and produce their 
maximum filling. Right:  Zoom of a single sphere touching four different fibers17.
E:   Left: Synchroton micro-CT image of a bioactive glass scaffold. Right: Pores within the 
scaffold identified by image analysis algorithms48.
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Figure 2: Examples of segmentation methods. 
All images have been reproduced with permission.
A: 3D collagen network binarisation method. Left: Representative image cube of a 5(6)-
Carboxytetramethylrhodamine N-succinimidylester (TAMRA)-labelled collagen scaffold. 
Right: A representative 2D slice of original image data, Otsu’s thresholding, adaptive local 
thresholding of a denoised and the final segmentation result16.
B: An unthresholded, undespeckled section of a micro-CT image of a collagen scaffold, 
demonstrating the noise which can be present in this type of data. Top right: Shows collagen 
in white, with the noise manually removed. Black represents void. Bottom right: shows the 
isolated noise, seen as light grey specks57.
C: Overview of how the DiameterJ algorithm analyses fiber diameter and other scaffold 
properties56.
D: Top left: CLSM images of nanomicrofiber scaffolds. Top right: filtered with median 3D. 
Bottom left: binarised. Bottom right: 3D reconstructed with Avizo Fire software43.
E: Top: Binarised image of a PVA scaffold. Bottom: Separation of pores using the watershed 
algorithm45.
F: Effect of pixel intensity threshold, K, on pore identification and resulting effect on pore 
size of scaffolds3.

Page 25 of 28 Journal of Materials Chemistry B

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
B

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
7 

20
25

. D
ow

nl
oa

de
d 

on
 2

02
5-

07
-2

4 
 9

:5
3:

32
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5TB00848D

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5tb00848d


Figure 3: Examples of automated pore size determination methods. 
All images have been reproduced with permission.
A: Quantification of 3D pore networks of sol–gel derived bioactive glass foams from micro-
CT data: (a) 2D slice of raw data, (b) 2D slice showing application of the dilation algorithm, 
(c) 2D representation of pores derived from the watershed algorithm, (d) 3D image of 
identified pores, (e) 3D image of the interconnects obtained from the top down algorithm, 
and (f) demonstration of the bounding box method of measuring the interconnect length19. 
B: Illustration of pore size determination of alginate hydrogel microcapsules using TEM 
images. Image A depicts a hydrogel as it is typically observed using transmission electron 
microscopy. Image B shows the results of the image segmentation after binarisation. Image C 
shows the result of a Euclidean distance transformation. Image D gives an overlay of the pore 
region image skeleton (red lines) with the original image. Image skeletons are one-pixel wide 
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center axes. They are defined via the set of inner pore pixels. The set is defined via local 
distance maxima with respect to alginate segments38.
C: Fiber network diameter determination of scaffolds (opposite of pore size determination, 
using similar algorithms). Top left: starting SEM image. Top centre: image histogram 
equalsation followed by 3 by 3 median filtering. Top right: local thresholding through Otsu 
method. Middle left: thinning, smoothing and removal of isolated pixel areas through a 
cascade of different morphological operators. Middle center: skeletonization. Middle right – 
Bottom left: binary filters for Delaunay network refinement. Bottom center: modified 
Delaunay network associated to the real fiber network. Bottom right: final network and fiber 
diameters detected25.
D: Simplified bubble analysis of the pore space of a random biopolymer network in two 
steps. Left: first, the Euclidean distance map (EDM) of the fluid space of the network 
structure is computed (shades of gray (colours online) indicate the distance of each fluid pixel 
to the nearest fiber pixel). (Black) Fibers. Second, the local maxima of the EDM (white 
crosses) determine the centres of all 2D bubbles. To avoid bubbles of similar size in close 
proximity, the EDM was smoothed with a 5 × 5 Gaussian kernel with a sigma of one before 
the local maxima were determined. (Inset) A local maximum of the EDM (red circle) is a 
pixel whose eight neighbours all have smaller values. Right: Resulting 2D bubbles (black 
circles) fit into the pore zones of the fiber structure (black). (Red crosses) Bubble centers102. 
E: Comparison of detected pores with cutoff values of 85 vs. 120 in Chitosan-gelatin cryogels 
using PoreVision software. Red outlines are pores outside the analysis boundary, blue 
outlines are pores removed for being too small (most likely dust, cracks, or folds), and green 
outlines are identified pores20.
F: Illustration of varying results provided by micro-CT 2D pore size analysis of collagen-
based scaffolds. Pores (in gray) of 3 differing shapes (left, centre, right) were evaluated by 
means of 4 micro-CT 2D parameters (MT—mean thickness, MD—major diameter, BICD—
biggest inner circle diameter, AECD—area-equivalent circle diameter) and their values are 
presented in panels below the images (in mm). The results tend to differ with increasing 
shape irregularity46.
G: Colour map and pixel intensity based measurement of macro pore size distribution in a 
polymeric scaffold21.
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