Issue 6, 2011

Capabilities of inductively coupled plasma mass spectrometry for the detection of nanoparticles carried by monodisperse microdroplets

Abstract

Recently, first analyses of single sub-micrometre particles, embedded in liquid droplets, by inductively coupled plasma optical emission spectrometry (ICP-OES) with a size-equivalent detection limit of several hundred nanometres were reported. To achieve lower detection limits which might allow for the analysis of particles in the nanometre size range a more sensitive technique such as mass spectrometry (MS) is required. Various modifications of particle delivery and data acquisition systems commonly used were carried out to install a setup adequate for ICP-MS detection. These modifications enabled us to supply droplets generated by a commercial microdroplet generator (droplet size: 30–40 µm) with nearly 100% efficiency and high uniformity to the ICP. Analyses were performed using both standard solutions of dissolved metals at concentrations of 1 (Ag), 2 (Au), 5 (Au), or 10 (Cu) mg L−1 and highly diluted suspensions of gold and silver nanoparticles with sizes below 110 nm. In doing so, detection efficiencies of 10−6 counts per atom could be achieved while size-related limits of quantification were found to be 21 nm and 33 nm for gold and silver, respectively. Furthermore, the advantages of utilizing microdroplet generators vs. conventional nebulizers for nanoparticle analyses by ICP-MS are discussed.

Graphical abstract: Capabilities of inductively coupled plasma mass spectrometry for the detection of nanoparticles carried by monodisperse microdroplets

Article information

Article type
Communication
Submitted
15 Dec. 2010
Accepted
31 Marts 2011
First published
20 Apr. 2011

J. Anal. At. Spectrom., 2011,26, 1166-1174

Capabilities of inductively coupled plasma mass spectrometry for the detection of nanoparticles carried by monodisperse microdroplets

S. Gschwind, L. Flamigni, J. Koch, O. Borovinskaya, S. Groh, K. Niemax and D. Günther, J. Anal. At. Spectrom., 2011, 26, 1166 DOI: 10.1039/C0JA00249F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements