Issue 45, 2013

Tailoring of network dimensionality and porosity adjustment in Zr- and Hf-based MOFs

Abstract

Three Zr and Hf based metal–organic frameworks, namely DUT-52, DUT-53 and DUT-84 (DUT = Dresden University of Technology) were synthesized using linear 2,6-naphtalenedicarboxylate as a linker. By adjusting the modulator concentration only, the connectivity of SBU can be reduced from 12 to 8 and even to 6, which is reflected in different crystal structures possessing fcu (DUT-52), bcu (DUT-53) and (4,4)IIb (DUT-84) topologies, respectively. DUT-52 is isoreticular to UiO-66. DUT-53 is derived from DUT-52 by omitting four linker molecules from 12-connected SBU environment. In DUT-84 the dimensionality of the structure switches to 2D as a result of omitting further two linker molecules. The structure of DUT-84 is composed of double layers and involves 6-connected SBUs, which are observed for the first time in Zr-based metal–organic frameworks. All compounds are porous and thermally stable up to 450 °C. The BET area, amount to 1399 m2 g−1, 1097 m2 g−1, 782 m2 g−1, and 637 m2 g−1 for DUT-52(Zr), DUT-52(Hf), DUT-53(Hf) and DUT-84(Zr).

Graphical abstract: Tailoring of network dimensionality and porosity adjustment in Zr- and Hf-based MOFs

Supplementary files

Article information

Article type
Paper
Submitted
12 Jūn. 2013
Accepted
29 Jūl. 2013
First published
31 Jūl. 2013

CrystEngComm, 2013,15, 9572-9577

Tailoring of network dimensionality and porosity adjustment in Zr- and Hf-based MOFs

V. Bon, I. Senkovska, M. S. Weiss and S. Kaskel, CrystEngComm, 2013, 15, 9572 DOI: 10.1039/C3CE41121D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements