Volume 196, 2017

Cellular membrane-anchored fluorescent probe with aggregation-induced emission characteristics for selective detection of Cu2+ ions

Abstract

The exploration of advanced fluorescent probes that can detect divalent copper (Cu2+) in aqueous environments and even in live organisms is particularly valuable for understanding the occurrence and development of Cu2+-related diseases. In this work, we report the design and synthesis of an aggregation-induced emission luminogen (AIEgen)-based probe (TPE-Py-EEGTIGYG) by integrating an AIEgen, TPE-Py, with a peptide, EEGTIGYG, which can selectively detect Cu2+ in both aqueous solution and live cells. Peptide EEGTIGYG has dual functionality in the probe design, namely improving water solubility and providing specific cell membrane-binding ability. TPE-Py-EEGTIGYG can self-assemble into nanoaggregates at high concentration in aqueous solution (e.g., 25 μM), which possess large fluorescence output due to the restriction of intramolecular rotation of the phenyl rings on TPE-Py. The fluorescence of the TPE-Py-EEGTIGYG nanoaggregates can be significantly quenched by Cu2+ but not by other metal ions, achieving the selective detection of Cu2+ in aqueous media. Furthermore, TPE-Py-EEGTIGYG can exist as a molecular species and is very weakly fluorescent in dilute aqueous solution (e.g., 5 μM), but can however largely switch on its fluorescence upon specifically anchoring onto the cell membrane. The emissive probes on the cell membrane can be used for the detection of Cu2+ ions that move in and out of cells with a fluorescence “turn-off” mode.

Associated articles

Article information

Article type
Paper
Submitted
07 Aug. 2016
Accepted
19 Aug. 2016
First published
19 Aug. 2016

Faraday Discuss., 2017,196, 377-393

Cellular membrane-anchored fluorescent probe with aggregation-induced emission characteristics for selective detection of Cu2+ ions

D. Liu, S. Ji, H. Li, L. Hong, D. Kong, X. Qi and D. Ding, Faraday Discuss., 2017, 196, 377 DOI: 10.1039/C6FD00176A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements