Issue 23, 2017

A pomegranate-structured sulfur cathode material with triple confinement of lithium polysulfides for high-performance lithium–sulfur batteries

Abstract

High-performance lithium–sulfur batteries are widely and intensively pursued, owing to their projected high energy density and low cost. However, realizing the stable cycling of a sulfur cathode with good discharging/charging rate capability under high sulfur content and high sulfur loading conditions remains a major challenge. Confining the dissolvable lithium polysulfide intermediates while addressing the intrinsic low electrical conductivity of sulfur is a key approach toward solving the problem. This work presents the design of a pomegranate-structured sulfur cathode material with high electrochemical performance. To synthesize the material, mesoporous carbon particles with ferrocene decoration are infiltrated with sulfur and then wrapped into secondary particles by dendrimer-linked graphene oxide. In the designed structure, the mesoporous carbon serves as a conductive matrix and porous host for sulfur species; ferrocene provides polar sites to bind lithium polysulfides chemically; the dendrimer-linked graphene oxide encapsulation layers further confine leaching of polysulfides and ferrocene into the electrolyte. With the three components providing triple confinement of the polysulfides, the material with a high sulfur content of 75.7 wt% exhibits excellent cycling stability and good rate capability. A capacity of 826 mA h g−1 can be delivered at 1.0C with an average decay of only 0.010% per cycle over 1200 cycles. With a high S mass loading of 4 mg cm−2, the cathode can still be cycled at 0.5C for 300 cycles with a capacity decay as low as 0.038% per cycle.

Graphical abstract: A pomegranate-structured sulfur cathode material with triple confinement of lithium polysulfides for high-performance lithium–sulfur batteries

Supplementary files

Article information

Article type
Paper
Submitted
03 Janv. 2017
Accepted
17 Febr. 2017
First published
24 Marts 2017

J. Mater. Chem. A, 2017,5, 11788-11793

A pomegranate-structured sulfur cathode material with triple confinement of lithium polysulfides for high-performance lithium–sulfur batteries

Y. Mi, W. Liu, Q. Wang, J. Jiang, G. W. Brudvig, H. Zhou and H. Wang, J. Mater. Chem. A, 2017, 5, 11788 DOI: 10.1039/C7TA00035A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements