Alanna
Faradhiyani
a,
Qiao
Zhang
a,
Keisuke
Maruyama
a,
Junpei
Kuwabara
*a,
Takeshi
Yasuda
b and
Takaki
Kanbara
*a
aTsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan. E-mail: kuwabara@ims.tsukuba.ac.jp; kanbara@ims.tsukuba.ac.jp
bResearch Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
First published on 3rd April 2018
Polycondensation using Cu-catalysed aerobic oxidative C–H/C–H coupling reaction was developed for the synthesis of semiconducting polymers. The synthesised polymers served as optoelectronic materials in organic field effect transistors and organic light emitting diodes.
Scheme 1 Synthetic strategy developed in this work, involving monomer synthesis via direct arylation at the C5 position of thiazole and aerobic oxidative polycondensation at the C2 position. |
A thiazole-based compound was selected as a target monomer because the acidic C–H bond at the 2-position in thiazole is reactive toward aerobic oxidative homo-coupling reactions.13,28–30 For synthesis of the target monomer, direct C–H arylation of thiazole at the 5-position was utilized in a selective manner because the C–H bond at the 5-position possesses a high reactivity in Pd-catalysed direct arylation (Scheme 1).31,32 Recently, Guo et al. reported a similar strategy of direct arylation for the synthesis of thiazole-based monomers and demonstrated the oxidative polymerization of the monomer using a stoichiometric amount of metal oxidants (Ag2CO3 or Cu(OAc)2).33 In this work, model monomers bearing a fluorene unit (M1 and M2) were selected for optimizing the reaction conditions and for a detailed structural analysis because of the expected high solubility of the corresponding polymers (Scheme 2). The direct arylation of thiazoles with a dibromofluorene derivative afforded the products in good yields in the presence of only 2 mol% of Pd(OAc)2 as a catalyst.32 These compounds were fully characterized by NMR, mass spectrometry, and elemental analysis.
The monomer with methyl groups in the thiazole units (M1) was first examined for aerobic oxidative polymerization. The reaction with Cu(OAc)2 as a catalyst under air afforded a polymer with a molecular weight of 38500 in 87% yield (Table 1, entry 1).29 The large polydispersity value (Mw/Mn = 4.48) might be caused by precipitation of polymeric products during polymerization. The polymerization of M2 also proceeded under the same reaction conditions (entry 2). The molecular weight of the P2 polymer (18500) was lower than that of the methyl substituted polymer because it precipitated during the reaction owing to its lower solubility.34 The reaction with a reduced amount of Cu(OAc)2 (10 mol%) afforded only oligomeric products (entry 3). A higher monomer concentration (0.5 M) increased the efficiency of the reaction, affording a high-molecular-weight polymer (entry 4). Reactions performed using an O2-filled balloon were less effective than those using an open system under air in terms of yields, molecular weight of the polymer, and reproducibility (Tables S1 and S2, ESI†). The presence of acid or base inhibited the reactions, although these additives reportedly promote the re-oxidation of the metal catalyst or contribute to the deprotonation step (Table S1, ESI†).35,36 Since the reaction with 5 mol% of the Cu catalyst afforded only oligomeric products, the reaction conditions in entry 4 have been determined as the optimized conditions.
Entry | R | Cat./mol% | Conc./M | Yield/% | M n | M w/Mn |
---|---|---|---|---|---|---|
a The products were obtained by reprecipitation from CHCl3/CH3OH. Values of molecular weight were estimated by GPC calibrated on polystyrene standards. | ||||||
1 | CH3 | 20 | 0.25 | 87 | 38500 | 4.48 |
2 | H | 20 | 0.25 | 91 | 18500 | 4.66 |
3 | H | 10 | 0.25 | — | — | — |
4 | H | 10 | 0.50 | 98 | 19800 | 3.73 |
Fig. 1 shows the 1H NMR spectra of M2 and P2 synthesized under conditions outlined in entry 4. The signal for Ha in the monomer disappeared in the spectrum of the polymer because of the small number of the terminal unit in the high-molecular-weight polymer. All of the other signals could be assigned to protons in the repeating unit of the polymer with a reasonable integral ratio (Fig. S11, ESI†). These results show no defect of either branching or cross-linking structure in P2, although there is a possibility of a reaction at the 4-position of the thiazole moiety. The defect-free structure was also confirmed by 13C{1H} NMR (Fig. S12, ESI†). Inductively coupled plasma-mass spectrometry (ICP-MS) revealed that the residual amounts of Cu in P1 and P2 were 138 and 32 ppm, respectively. Therefore, the developed method was able to afford defect-free polymers with bench-stable Cu(OAc)2 as a catalyst and air as the sole oxidant source in a non-purified solvent. This simple reaction system is beneficial in terms of green chemistry.6,37
To prove the applicability of the developed method in the synthesis of semiconducting materials, the current method was applied to the synthesis of carbazole- and bithiophene-containing polymers. The monomers were synthesized by a similar direct arylation strategy under modified reaction conditions (Scheme S1, ESI†). The aerobic oxidative polycondensation of the monomers afforded the corresponding polymers (P3 and P4) under the optimized reaction conditions (Fig. 2). Owing to their low solubility, the polymers were obtained by Soxhlet extraction with o-dichlorobenzene. P3 and P4 were obtained in 80% and 73% yield, respectively. 1H NMR spectra of the polymers exhibit signals of the terminal unit (Fig. S13 and 14, ESI†). Based on the integral ratio between the terminal and repeating units, the degrees of polymerization of P3 and P4 were calculated to be 6 (MNMRn = 3400) and 8 (MNMRn = 5300), respectively. A high temperature GPC measurement for P4 exhibited a similar value (MGPCn = 5100), whereas that for P3 exhibited an underestimated value (MGPCn = 1100) presumably due to adsorption. The low molecular weights of P3 and P4 were likely a result of their precipitation during polymerization owing to low solubility. The detailed structural analyses proved the defect-free structure (see ESI†). Owing to relatively low-molecular weight, the terminal C–H groups were observed in 1H NMR spectra. ICP-AES showed a small amount of residual Cu (32 ppm for P3 and below measurable limits for P4).
The physical properties of P1–P4 were evaluated for application as semiconducting materials (Table 2). P4 showed the most red-shifted absorption and the highest HOMO energy level among P1–P4 because of its strong donor unit (bithiophene). The planar structure of the main chain also contributed to the extended π conjugation (Fig. S18, ESI†). The planarity and donor–acceptor structure led to the aggregation of the polymer, resulting in the lowest solubility and largest roughness of the thin film among the synthesized polymers, which was confirmed by AFM (Fig. S19, ESI†). To evaluate their p-type semiconducting properties, OFETs with these polymers were fabricated.26,38,39 The fabricated devices with P4 exhibited typical p-channel thin-film transistor characteristics with well-resolved linear and saturation regimes (Fig. S20, ESI†). Based on the transfer characteristics, the average hole mobility was calculated to be 2.2 ± 0.6 × 10−5 cm2 V−1 s−1. In contrast, OFETs with P2 and P3 showed negligible hole transporting properties because their low-lying HOMO levels led to high hole injection barriers. In terms of emission properties, P2 showed a relatively high emission quantum yield. The electroluminescence (EL) properties of P2 were also evaluated in an OLED device. The EL spectrum was similar to the photoluminescence (PL) spectrum of P2 (Fig. 3). The coordinates of the CIE chromaticity diagram were x = 0.34, y = 0.57 at 2.4 mA cm−2. The maximal brightness of EL was 1915 cd m−2 at a current of 351.2 mA cm−2, and the maximal external quantum efficiency (EQE) of the OLED was 0.31% at 5.4 mA cm−2 (Fig. S21, ESI†). These results showed that P2 served as emitting material of the OLED device.
λ max/nm | λ em/nm | Φ /% | E optgb/eV | HOMOc/eV | LUMOd/eV | |
---|---|---|---|---|---|---|
a Emission quantum yield. b Estimated from the absorption onset. c Estimated from photoelectron yield spectroscopy. d E LUMO = Eoptg + EHOMO. | ||||||
P1 | 410 | 520 | 6.8 | 2.67 | −6.11 | −3.44 |
P2 | 442 | 530 | 10.4 | 2.50 | −6.12 | −3.62 |
P3 | 455 | 568 | 2.7 | 2.40 | −5.69 | −3.29 |
P4 | 539 | 682 | 1.2 | 2.00 | −5.47 | −3.47 |
Fig. 3 (a) PL spectrum of a thin film of P2 and the EL spectrum of an OLED with P2 at 7 V. (b) Current density and luminescence characteristics of the device. |
Footnote |
† Electronic supplementary information (ESI) available: For experimental details, NMR, UV-vis absorption and photoemission spectra. See DOI: 10.1039/c7qm00584a |
This journal is © the Partner Organisations 2018 |