Fu
Yan‡
a,
Christian
Burgard‡
a,
Alexander
Popoff
a,
Nestor
Zaburannyi
a,
Gregor
Zipf
b,
Josef
Maier
c,
Hubert S.
Bernauer
b,
Silke C.
Wenzel
a and
Rolf
Müller
*a
aHelmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany. E-mail: rom@helmholtz-hzi.de
bATG:biosynthetics GmbH, Weberstraße 40, 79249 Merzhausen, Germany
cIStLS – Information Services to Life Sciences, Härlestraße 24/1, 78727 Oberndorf am Neckar/Boll, Germany
First published on 8th August 2018
Synthetic biology techniques coupled with heterologous secondary metabolite production offer opportunities for the discovery and optimisation of natural products. Here we developed a new assembly strategy based on type IIS endonucleases and elaborate synthetic DNA platforms, which could be used to seamlessly assemble and engineer biosynthetic gene clusters (BGCs). By applying this versatile tool, we designed and assembled more than thirty different artificial myxochromide BGCs, each around 30 kb in size, and established heterologous expression platforms using a derivative of Myxococcus xanthus DK1622 as a host. In addition to the five native types of myxochromides (A, B, C, D and S), novel lipopeptide structures were produced by combinatorial exchange of nonribosomal peptide synthetase (NRPS) encoding genes from different myxochromide BGCs. Inspired by the evolutionary diversification of the native myxochromide megasynthetases, the ancestral A-type NRPS was engineered by inactivation, deletion, or duplication of catalytic domains and successfully converted into functional B-, C- and D-type megasynthetases. The constructional design approach applied in this study enables combinatorial engineering of complex synthetic BGCs and has great potential for the exploitation of other natural product biosynthetic pathways.
High-throughput sequencing of bacterial genomes has revealed great potential in the discovery of novel natural products.8 However, the translation of genomic sequences into novel natural products remains a challenging task.9 As most bacteria have not been cultured and many cultured species cannot be manipulated genetically,10 potential natural product BGCs of unknown function need to be cloned and transferred to suitable heterologous hosts for expression and engineering. Albeit the promising biosynthetic potential of bacterial genomes, BGC cloning and pathway engineering, especially in terms of the construction of combinatorial libraries, still remains a challenging task due to the complexity of bacterial genomes and the large sizes of BGCs. In addition, the production levels of natural products in heterologous hosts are often low. This is caused by numerous reasons, e.g. codon bias, inefficient transcription and incorrect protein folding, just to name a few.11 Recent developments in DNA synthesis provide opportunities to elaborately design and synthesize BGCs at will, and thus bear great potential in harnessing BGCs, identifying production-limiting factors and fostering combinatorial biosynthesis. As exemplified by work focusing on biosynthetic pathways of 6-deoxyerythronolide B, epothilone, spectinabilin and novobiocin, refactoring BGCs by using synthetic biology tools generated expected products.12 However, low production yields were observed and currently cannot be explained in detail.
Although the cost for DNA synthesis is on a rapid decline, synthesis of GC-rich DNA fragments larger than 5 kilobase pairs (kbp) is still a serious concern and expensive. Therefore, synthetic BGCs usually need to be assembled from relatively small DNA fragments. In recent years, DNA assembly technologies, such as recombination-based methods,13 PCR-based methods,14 Gibson assembly-like techniques,15 and type IIS restriction endonuclease (RE)-based techniques,16–19 have been developed and widely applied. Nevertheless, there are still significant limitations for the state-of-the-art techniques regarding scarless assembly of complex BGCs. Among these techniques, recombination-based methods exhibit high assembly efficiency. However, their potential limitation in the assembly of large synthetic BGCs with repetitive sequences is less investigated. Clearly, there is still a need to improve the fidelity of DNA sequences for PCR-based methods and Gibson assembly.20 The latest CRISPR-Cas9 technology coupled with homologous recombination or Gibson assembly showed prospective potential in gene cloning,21 however, it would require several rounds of complex manipulations for assembly of multiple synthetic DNA fragments. Type IIS restriction endonuclease-based tools, such as Golden Gate assembly,16,22 GoldenBraid,18 MoClo,17 and EcoFlex systems,19 revealed great advantages in DNA assembly, and bear potential for DNA shuffling and combinatorial biosynthesis.23 Unlike the most commonly used REs, type IIS REs recognize non-palindromic sequences and hydrolyze the DNA double strand outside of their recognition sites, thereby enabling the design of unique overhangs and the seamless ligation of two or more DNA fragments. However, their potential in genetic engineering of complex BGCs encoding multi-domain PKS/NRPS megasynthetases has not been investigated.
In a recent study on myxobacterial lipopeptide biosynthetic pathways we performed a comprehensive analysis of genetic changes in BGCs causing structural diversification of the lipopeptide products myxochromides, which seem to occur widespread among myxobacterial species.24 Previous studies indicate a physiological role of myxochromides in the developmental life cycle of myxobacteria,24 significant antimicrobial or cytotoxic activities were not detected in the applied testings.25,26 Until now, five different types of myxochromides (A, B, C, D and S) differing in the amino acid composition of their peptide cores, and the corresponding BGCs (mch gene clusters) have been identified (Fig. 1).24–27 The mch clusters are around 30 kb in size and contain four co-transcriptional genes. The gene mchA encodes a type I iterative PKS module, which synthesizes the polyunsaturated lipid chains. The NRPS genes mchB and mchC encode multimodular NRPS subunits, which direct the biosynthesis of myxochromide peptide cores. A short coding DNA sequence (CDS) located downstream of mchC was recently identified and designated as mchD, encoding a putative membrane protein of unknown function.24 Phylogenetic analysis suggested the A-type mch cluster as the common ancestral gene cluster of the other known mch clusters.24 The domain organizations in the megasynthetase subunits MchA and MchB among all pathways are identical, while significant differences have been found in MchC (Fig. 1). The observed evolutionary diversification of MchC by point mutations and recombination events led to the production of different types of myxochromides. In addition to studies with the native myxochromide producer strains, proficient heterologous expression systems using Myxococcus xanthus, Pseudomonas putida and Corallococcus macrosporus as hosts could be established,28,29 facilitating future efforts to further exploit this compound class.24
Fig. 1 Myxochromide biosynthetic pathways and chemical structures. (i) The mch gene clusters consist of a pks gene (mchA), two nrps genes (mchB and mchC) and mchD (not shown in the figure). The catalytic domains of the encoded PKS/NRPS subunits are illustrated and abbreviated as follows: KS, ketosynthase; AT, acyltransferase; DH, dehydratase; ER, enoylreductase; KR, ketoreductase; CP, carrier protein; C, condensation domain; A, adenylation domain; MT, methyltransferase domain; E, epimerization domain; TE, thioesterase. In the case of NRPS encoding genes, domains are numbered according to the modular organization and the incorporated substrates are indicated. The color filled modules highlight the differences between the A-type and other pathway types. Module deletions are marked with slashes. Domains marked with an asterisk are supposed to be inactive. The figure is reproduced from ref. 24. (ii) Chemical structures of myxochromides. |
The divergent myxochromide pathways and lipopeptide structures provide an ideal system to apply synthetic biology approaches for combinatorial biosynthesis and evolutionary-guided pathway engineering. In this study we developed an efficient strategy for the assembly and versatile engineering of BGCs encoding multifunctional PKS/NRPS megasynthetases. Based on synthetic DNA, more than thirty artificial myxochromide BGCs were generated and heterologously expressed in a derivative of the myxobacterial model strain M. xanthus. Different engineering approaches were applied in order to expand the structural diversity of the myxochromide lipopeptide family.
Fig. 2 Assembly strategy for the generation of artificial myxochromide BGCs consisting of four steps: ligation of synthetic mch gene fragments on the cloning vector pSynbio1; ‘desplitting’ of gene constructs using type IIS restriction enzymes; ‘rejoining’ of the single domain encoding fragments after removal of splitter elements (SEs); reconstitution of the BGC by stepwise assembly of the promoter, 5′-/3′-truncated gene, intergenic linker and terminator fragments on the expression vector pSynbio2. Restriction sites (R) were introduced in SEs as well as at both termini of each gene synthesis fragment (RL, KpnI; RR, PmeI; RT, PvuI; other R-sites are listed in Table S3†). RIIS, type IIS R-site. Recognition sequences for IIS endonucleases used in the SEs (BsaI or AarI) were introduced in the flanking regions of mchA′/B′/C′ gene fragments for the desplitting process (Table S3†). |
Plasmid | Descriptiona | GenBank Acc. No. |
---|---|---|
a mch clusters in pSynMch1-12 are under the control of the native promoter, while in pSynMch13-33 mch clusters the PTn5 promoter (PnptII) was used. The types of gene cluster in the corresponding synthetic segments are illustrated in lowercase; modified positions are indicated in lowercase and bold. b Design of A-type mch cluster from M. xanthus DK1622 (GenBank Acc. No. KX622595) based on AarI restriction sites. Except this construct, the design of all other mch clusters based on BsaI restriction sites. | ||
pSynMch1 | Synthetic A-type mch clusterb (P5mchAA-mchAA-3AA5BA-mchBA-3BA5CA-mchCA-T3mchCA) | MG583853 |
pSynMch2 | Synthetic A-type mch cluster (P5mchAA-mchAA-3AA5BA-mchBA-3BA5CA-mchCA-T3mchCA) | MG583854 |
pSynMch3 | Synthetic B-type hybrid mch cluster (P5mchAA-mchAA-3AA5BA-mchBA-3BB5CB-mchCB-T3mchCB) | MG583855 |
pSynMch4 | Synthetic C-type hybrid mch cluster (P5mchAA-mchAA-3AA5BA-mchBA-3BC5CC-mchCC-T3mchCC) | MG583856 |
pSynMch5 | Synthetic D-type hybrid mch cluster (P5mchAA-mchAA-3AA5BA-mchBD-3BD5CD-mchCD-T3mchCD) | MG583857 |
pSynMch6 | Synthetic S-type hybrid mch cluster (P5mchAA-mchAA-3AA5BA-mchBS-3BS5CS-mchCS-T3mchCS) | MG583858 |
pSynMch8 | Synthetic AS-type hybrid mch cluster (P5mchAA-mchAA-3AA5BA-mchBA-3BA5CA-mchCS-T3mchCS) | MG583859 |
pSynMch9 | Synthetic SA-type hybrid mch cluster (P5mchAA-mchAA-3AA5BA-mchBS-3BA5CA-mchCA-T3mchCA) | MG583860 |
pSynMch10 | Synthetic SC-type hybrid mch cluster (P5mchAA-mchAA-3AA5BA-mchBS-3BC5CC-mchCC-T3mchCC) | MG583861 |
pSynMch11 | Synthetic SB-type hybrid mch cluster (P5mchAA-mchAA-3AA5BA-mchBS-3BB5CB-mchCB-T3mchCB) | MG583862 |
pSynMch12 | Synthetic SD-type hybrid mch cluster (P5mchAA-mchAA-3AA5BA-mchBS-3BD5CD-mchCD-T3mchCD) | MG583863 |
pSynMch13 | Synthetic A-type mch cluster (PTn5mchAA-mchAA-3AA5BA-mchBA-3BA5CA-mchCA-T3mchCA) | MG583864 |
pSynMch14 | Synthetic SA-type hybrid mch cluster (PTn5mchAA-mchAA-3AA5BA-mchBS-3BA5CA-mchCA-T3mchCA) | MG583865 |
pSynMch15 | Synthetic SB-type hybrid mch cluster (PTn5mchAA-mchAA-3AA5BA-mchBS-3BB5CB-mchCB-T3mchCB) | MG583866 |
pSynMch16 | Synthetic SD-type hybrid mch cluster (PTn5mchAA-mchAA-3AA5BA-mchBS-3BD5CD-mchCD-T3mchCD) | MG583867 |
pSynMch17 | Synthetic A-type mch cluster with inactivated CP1 domain (PTn5mchAA-mchAA-3AA5BA-mchBA-CP1*-3BA5CA-mchCA-T3mchCA) | MG583868 |
pSynMch18 | Synthetic A-type mch cluster with inactivated CP2 domain (PTn5mchAA-mchAA-3AA5BA-mchBA-CP2*-3BA5CA-mchCA-T3mchCA) | MG583869 |
pSynMch19 | Synthetic A-type mch cluster with inactivated CP3 domain (PTn5mchAA-mchAA-3AA5BA-mchBA-3BA5CA-mchCA-CP3*-T3mchCA) | MG583870 |
pSynMch20 | Synthetic A-type mch cluster with inactivated CP4 domain (PTn5mchAA-mchAA-3AA5BA-mchBA-3BA5CA-mchCA-CP4.1*-T3mchCA) | MG583871 |
pSynMch21 | Synthetic A-type mch cluster with inactivated CP4 domain (PTn5mchAA-mchAA-3AA5BA-mchBA-3BA5CA-mchCA-CP4.2*-T3mchCA) | MG583872 |
pSynMch22 | Synthetic A-type mch cluster with inactivated CP5 domain (PTn5mchAA-mchAA-3AA5BA-mchBA-3BA5CA-mchCA-CP5*-T3mchCA) | MG583873 |
pSynMch23 | Synthetic A-type mch cluster with inactivated CP6 domain (PTn5mchAA-mchAA-3AA5BA-mchBA-3BA5CA-mchCA-CP6*-T3mchCA) | MG583874 |
pSynMch24 | Synthetic S-type mch cluster with reactivation of CP4 domain (P5mchAA-mchAA-3AA5BA-mchBS-3BS5CS-mchCS-CP4-T3mchCS) | MG583875 |
pSynMch25 | Synthetic A-type mch cluster with duplicated module 1 (PTn5mchAA-mchAA-3AA5BA-mchBA[duplM1]-3BA5CA-mchCA-T3mchCA) | MG583876 |
pSynMch26 | Synthetic A-type mch cluster with duplicated module 2 (PTn5mchAA-mchAA-3AA5BA-mchBA[duplM2]-3BA5CA-mchCA-T3mchCA) | MG583877 |
pSynMch27 | Synthetic A-type mch cluster with duplicated module 3 (PTn5mchAA-mchAA-3AA5BA-mchBA-3BA5CA-mchCA[duplM3]-T3mchCA) | MG583878 |
pSynMch28 | Synthetic A-type mch cluster with duplicated module 6 (PTn5mchAA-mchAA-3AA5BA-mchBA-3BA5CA-mchCA[duplM6]-T3mchCA) | MG583879 |
pSynMch29 | Synthetic A-type mch cluster with deletion of module 1 (PTn5mchAA-mchAA-3AA5BA-mchBA[delM1]-3BA5CA-mchCA-T3mchCA) | MG583880 |
pSynMch30 | Synthetic A-type mch cluster with deletion of module 2 (PTn5mchAA-mchAA-3AA5BA-mchBA[delM2]-3BA5CA-mchCA-T3mchCA) | MG583881 |
pSynMch31 | Synthetic A-type mch cluster with deletion of module 3 (PTn5mchAA-mchAA-3AA5BA-mchBA-3BA5CA-mchCA[delM3]-T3mchCA) | MG583882 |
pSynMch32 | Synthetic A-type mch cluster with deletion of module 4 (PTn5mchAA-mchAA-3AA5BA-mchBA-3BA5CA-mchCA[delM4]-T3mchCA) | MG583883 |
pSynMch33 | Synthetic A-type mch cluster with deletion of module 5 (PTn5mchAA-mchAA-3AA5BA-mchBA-3BA5CA-mchCA[delM5]-T3mchCA) | MG583884 |
Fig. 3 Synthetic mch gene clusters and generated myxochromides. Synthetic mch clusters for production of native (i) and novel hybrid (iii) myxochromides. Abbreviations of the assembled gene cluster fragments are shown on the top. The lowercase letter indicates from which gene cluster type the fragment originates, which is also reflected by coloring (A-type, white; B-type, red; C-type, green; D-type, orange or S-type, blue). Simplified chemical structures of the produced native (ii) and hybrid (iv) myxochromides. The corresponding myxochromide type is indicated on the right; detailed structural information of the novel hybrid types (AS, SA, SB, SC, and SD) is given in ESI section 5.† FA, polyunsaturated fatty acid. |
In the course of assembly of mch gene clusters, the efficiency of molecular cloning was mainly limited by the “rejoining” of the mchC gene. It seems that the efficiency of the cluster assembly is related to the size of the genes and the number of fragments. In our experiments, we were able to achieve 70–90% and 50–75% correct clones for the desplitting and assembly of mchA′ (∼6.2 kb with 4 splitter elements, 6 fragments in total) and mchB′ (∼9 kb with 6 splitter elements, 8 fragments in total), respectively, while the efficiency for the assembly of mchC′ (13–16 kb, 12–15 splitter elements, 14–17 fragments in total) was relatively low (10–30% correct clones). However, in the desplitting and assembly of mchC′B (16 kb, 3 splitter elements, 5 fragments in total), 75% clones were correct as judged by restriction analysis. Reducing the number of SEs or separation of large genes to several assembly units may improve the efficiency in the “rejoining” step. Notably, in contrast to the relatively high frequency of mutations shown for PCR-based assembly and Gibson assembly,20 the fidelity of the synthetic gene sequences was retained in our assembly process. In all of the sequenced constructs, point mutations occurred only rarely and are thought to be generated during plasmid replication in E. coli. Only three of the 32 sequenced constructs contained point mutations. Upon sequencing of a second clone, constructs free of mutations could be identified.
In order to ultimately validate the produced novel peptide cores, we cultivated the corresponding M. xanthus mutants in large scale and tried to isolate them for structure elucidation. Myxochromide AS was initially purified and structurally validated. Myxochromide SC was also purified, however, due to the low yield the purification process turned to be labor consuming. To facilitate the purification of sufficient compound material, we set out to increase the production titer of other hybrid myxochromides by means of promoter replacement. In a previous study, high production of myxochromide S was achieved by expression of the S-type mch gene cluster under control of the PTn5 (PnptII) constitutive promoter in the heterologous host M. xanthus.29 Therefore, we initially replaced the native promoter of the synthetic mchA cluster with the PTn5 promoter. The resulting construct pSynMch13 (Fig. 3 and Table 1) was transferred into M. xanthus DK1622 ΔmchA-tet and, expectedly, subsequent LC-MS analysis of the culture extracts revealed a remarkable increase (∼60 fold) for the production of myxochromide A (Fig. S5 and S6†). In analogy, the production titers of myxochromides SA, SB and SD were optimized by replacement of the native promoter of the corresponding hybrid myxochromide BGC with PTn5 promoter (pSynMch14, pSynMch15 and pSynMch16, Table 1), yielding sufficient compound material for structural elucidation. The planar structure of each representative of the purified hybrid myxochromides was unambiguously confirmed by NMR spectroscopy (ESI section 5†), while the absolute configurations of amino acids were elucidated by using Marfey's method and UPLC-MS analysis (ESI section 5†).32
In addition to the successful generation of novel lipopeptide structures our combinatorial approach uncovered the reason for the presence of an L-configured amino acid (leucine) in position two of the myxochromide S peptide core in contrast to other native myxochromides. The incorporation of D-leucine by hybrid assembly lines in which the MchBS subunit is recombined with MchC from A-, B-, C- or D-type pathways (Fig. 3) clearly shows that the E domain from MchBS is active and functional on a leucine residue. Therefore, the L-leucine residue in myxochromide S seems to (exclusively) result from the stereoselectivity of the downstream C3 domain of the MchCS subunit. This is underpinned by the incorporation of L- instead of D-configured alanine in position two of the myxochromide AS peptide core produced by the MchBA–MchCS hybrid NRPS. Taken together, our results show that the E domain from all MchB subunits is functional and the C domain of the downstream module (C3 from the MchC subunits) acts as a gatekeeper and key determinant for the observed stereochemistry. However, according to our previous studies C3 domains from all native myxochromide pathways (including the S-type pathway) were predicted to represent the DCL-type selecting for D-configured peptide substrates from the upstream module,24 indicating that methods for the in silico analysis of C domain specificities have to be refined.
Next, we aimed at modifying the artificial A-type BGC by engineering additional modules. In analogy to the duplicated domain region in the native myxochromide B megasynthetase,24 An-CPn-Cn+1 units were designed to target different positions of the A-type megasynthetase (Cn-An-CPn units for C-terminal subunit regions). The respective synthetic fragments were introduced into the mchBA or mchCA genes for subsequent modification of the expression construct pSynMch13. Due to difficulties in the “desplitting” process of the engineered mchC′A genes from plasmids pSyn1-MchC_A_duplM4_SE and pSyn1-MchC_A_duplM5_SE (Table S6†) constructs for duplications of A4-CP4-C5 (DuplM4) and A5-CP5-C6 (DuplM5) domain sets were not obtained. The four generated expression plasmids harboring duplicated domain sets, pSynMch25 (A1-MT1-CP1-C2; DuplM1), pSynMch26 (C2-A2-CP2; DuplM2), pSynMch27 (A3-CP3-C4; DuplM3) and pSynmch28 (C6-A6-CP6; DuplM6), were transferred into M. xanthus DK1622 ΔmchA-tet for expression and production analysis via UPLC-MS. As indicated in Fig. 4 myxochromides were detected in all four mutant strains. The duplication (DuplM3) revealed the expected lipoheptapeptide myxochromide B as the major product, while myxochromide A was produced as a minor derivative. Duplications of module 1, 2 or 6 (DuplM1, DuplM2 and DuplM6) in contrast did not result in the biosynthesis of lipoheptapeptides, but myxochromide A was still detected (Fig. S11†). In order to exclude a deletion of the duplicated module fragments by intramolecular recombination events, the presence of the respective fragments in the chromosomes of the M. xanthus expression strains was verified by Southern blot analysis, indicating that the BGC regions with the repetitive DNA sequences are indeed stable (Fig. S13†). The production of myxochromide A instead of lipoheptapeptides suggests that the duplicated domain set is skipped and that biosynthesis is achieved via the native domain/module interactions of the A-type megasynthetase, which is also observed as a “side reaction” in the DuplM3 experiment revealing myxochromide A as a minor product. The complete lack of lipoheptapeptide production with DuplM1, DuplM2 and DuplM6 might be due to the overall structural conformation of the engineered megasynthetase, dominant native interactions of the catalytic domains, non-functional fusion sites and/or restricted substrate specificities of downstream domains.36 Similar to the CP inactivation experiments, the module duplication approach was only successful in the position at which a natural duplication event was detected (DuplM3; see myxochromide B pathway).
The third strategy applied for myxochromide A pathway engineering was a module deletion approach. Inspired by recombination events proposed for myxochromide C BGC evolution,24 synthetic DNA fragments for deletion of An-CPn-Cn+1 units (including MT1 in the case of module 1) were generated. In order to maintain the native MchB/MchC subunit arrangement and docking regions we planned an A-CP didomain deletion for module 2 (similar to the A4-CP4 deletion during evolution of the D-subtype 2 megasynthetase).24 According to the established engineering procedure five expression plasmids with modified versions of the A-type BGC were constructed: pSynMch29 (ΔA1-MT1-CP1-C2; DelM1), pSynMch30 (ΔA2-CP2; DelM2), pSynMch31 (ΔA3-CP3-C4; DelM3), pSynMch32 (ΔA4-CP4-C5; DelM4) and pSynMch33 (ΔA5-CP5-C6; DelM5). The myxochromide production profiles of the transformed M. xanthus host strains were analyzed by UPLC-MS. The obtained data showed that mutants with DelM4 and DelM5 modifications produced the expected myxochromide types D and C, respectively (Fig. 4 and S12†). The modifications DelM1, DelM2 and DelM3, however, resulted in an abolishment of myxochromide production, indicating that the engineered myxochromide A megasynthetase is not functional most likely due to the significant structural changes. These results are in accordance with observations from native myxochromide pathways, for which An-CPn(-Cn+1) deletions were only detected for modules 4 and 5 so far.24
Based on our analyses and previous experiments the design for the duplications and deletions of myxochromide biosynthetic domain sets was based on An-CPn-Cn+1 (except DuplM2 and DuplM6) or An-CPn (for DelM2) units rather than functional modules (Cn-An-CPn). In a recent study on NRPS engineering, novel compounds were generated by combinatorial biosynthesis based on the same strategy of exchange units (An-CPn-Cn+1), and a consensus motif of flexible linker regions between C and A domains was used for unit-swapping.6 However, the C–A linker regions in myxochromide megasynthetases seem to be less conserved as in Photorhabdus and Xenorhabdus as mentioned by Bode and colleagues.6 The module engineering approach in this study was inspired by the natural module duplication/deletion events that occurred during mch BGC evolution. Therefore, instead of using the C–A linker, we used the fusion sites located at the N-terminus of the A domains (module duplications) and at the C-terminus of the C domains (module deletions) (Fig. S9 and S10†).24 Although no novel myxochromide derivative was generated by engineering of modules/domains, the regeneration of other myxochromides from the A-type pathway provides further evidence for the genetic interrelationship of myxochromide pathways as previously proposed.24
Footnotes |
† Electronic supplementary information (ESI) available: Experimental procedures, design of artificial gene cluster, genetic manipulation, LC-MS analysis and structure elucidation. See DOI: 10.1039/c8sc02046a |
‡ These authors contributed equally. |
This journal is © The Royal Society of Chemistry 2018 |