Issue 31, 2019

Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems

Abstract

The resonance energy transfer and entanglement between two-level quantum emitters are typically limited to sub-wavelength distances due to the inherently short-range nature of the dipole–dipole interactions. Moreover, the entanglement of quantum systems is hard to preserve for a long time period due to decoherence and dephasing mainly caused by radiative and nonradiative losses. In this work, we outperform the aforementioned limitations by presenting efficient long-range inter-emitter entanglement and large enhancement of resonance energy transfer between two optical qubits mediated by epsilon-near-zero (ENZ) and other plasmonic waveguide types, such as V-shaped grooves and cylindrical nanorods. More importantly, we explicitly demonstrate that the ENZ waveguide resonant energy transfer and entanglement performance drastically outperforms the other waveguide systems. Only the excited ENZ mode has an infinite phase velocity combined with a strong and homogeneous electric field distribution, which leads to a giant energy transfer and efficient entanglement independent of the emitters’ separation distances and nanoscale positions in the ENZ nanowaveguide, an advantageous feature that can potentially accommodate multi-qubit entanglement. Moreover, the transient entanglement can be further improved and become almost independent of the detrimental decoherence effect when an optically active (gain) medium is embedded inside the ENZ waveguide. We also present that efficient steady-state entanglement can be achieved by using a coherent external pumping scheme. Finally, we report a practical way to detect the steady-state entanglement by computing the second-order correlation function. The presented findings stress the importance of plasmonic ENZ waveguides in the design of the envisioned on-chip quantum communication and information processing plasmonic nanodevices.

Graphical abstract: Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems

Article information

Article type
Paper
Submitted
14 Jūn. 2019
Accepted
20 Jūl. 2019
First published
22 Jūl. 2019

Nanoscale, 2019,11, 14635-14647

Author version available

Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems

Y. Li, A. Nemilentsau and C. Argyropoulos, Nanoscale, 2019, 11, 14635 DOI: 10.1039/C9NR05083C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements