Issue 11, 2019

Comparative well-to-wheel life cycle assessment of OME3–5 synfuel production via the power-to-liquid pathway

Abstract

Oxymethylene Dimethyl Ethers (OMEs) are promising diesel fuel alternatives and interesting solvents for various industrial applications. In this report, a well-to-wheel life cycle assessment of short OME oligomers as produced via a Power-to-Liquid (PtL) pathway has been conducted. Variations in electricity and carbon dioxide supply as well as the hardware demand for the PtL plant components (e.g. PEM water electrolysis, carbon capturing, and 36 kta OME plant capacity) have been considered. Conventional diesel fuel is used as the comparative benchmark. In scenarios with a high share of renewable electricity well-to-wheel greenhouse gas emission for OME3–5 fuel is advantageous compared to fossil diesel. For the best case, well-to-wheel greenhouse gas emissions can be reduced by 86%, corresponding to 29 g(CO2eq) km−1 (OME3–5-fuel) compared to 209 g(CO2eq) km−1 (diesel fuel). However, these results are highly sensitive to the applied method with regard to system multifunctionality. A sensitivity analysis indicates that input electricity at ∼50 g(CO2eq) kWhel−1 enables well-to-wheel greenhouse gas emissions of <100 g(CO2eq) km−1. For other environmental impact categories, acidification, eutrophication, respiratory effects, photochemical ozone creation and resource depletion exceed significantly the fossil fuel reference. A high share of these impacts can be assigned to electricity production, either through direct electricity consumption in the PtL system or during upstream production of hardware components. The presented results and discussion demonstrate the necessity for global defossilisation including material efficient manufacturing of renewable energy plants which remains mandatory for synfuel production addressing a wide range of environmental impact categories. Furthermore, PtL production concerning well-to-wheel greenhouse gas emissions could be beneficial even in Germany if dedicated renewable energy capacities are considered. However, operation of large-scale PtL plants will predominantly be conducted in countries with high renewable energy potential, resulting in low levelized cost of electricity and high full load hours.

Graphical abstract: Comparative well-to-wheel life cycle assessment of OME3–5 synfuel production via the power-to-liquid pathway

Supplementary files

Article information

Article type
Paper
Submitted
15 Aug. 2019
Accepted
15 Sept. 2019
First published
16 Sept. 2019

Sustainable Energy Fuels, 2019,3, 3219-3233

Comparative well-to-wheel life cycle assessment of OME3–5 synfuel production via the power-to-liquid pathway

C. Hank, L. Lazar, F. Mantei, M. Ouda, R. J. White, T. Smolinka, A. Schaadt, C. Hebling and H. Henning, Sustainable Energy Fuels, 2019, 3, 3219 DOI: 10.1039/C9SE00658C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements