Issue 35, 2021

Suppressed ion migration in powder-based perovskite thick films using an ionic liquid

Abstract

While solution-processed halide perovskite thin films caused enormous attention when used in solar cells, thick films prepared by compressing perovskite powders are considered promising candidates for the next generation of X-ray detectors. However, X-ray detectors based on such powder-pressed perovskites typically suffer from relatively high dark currents, which were attributed to be caused by ion migration. Here we show that the dark current in 800 μm thick powder-pressed MAPbI3-pellets can be reduced by a factor of 25 when using a passivated powder. The passivation was achieved by adding 1 mol% of the ionic liquid (IL) BMIMBF4 to the precursors MAI and PbI2 during the mechanochemical synthesis of the MAPbI3 powder. NMR verified the presence of the IL, and its impact on the excited state recombination dynamics was manifested in an increase in the photoluminescence (PL) intensity and a decrease in the monomolecular (trap-assisted) recombination rate, both by about one order of magnitude. By measuring the migration of a PL quenching front upon application of an electric field in a microscope, we determine an ionic diffusivity in the typical range of iodide vacancies in the non-passivated pellet. At the same time, we observe no such PL quenching front in the passivated pellet. Concomitantly, dark IV curves are hysteresis-free, and light-soaking effects are absent, in contrast to non-passivated pellets. Thus, our work demonstrates the effect on the optical and electrical properties when passivating mechanochemically synthesized halide perovskite powders using an IL, which will facilitate the further development of powder-based perovskite X-ray detectors.

Graphical abstract: Suppressed ion migration in powder-based perovskite thick films using an ionic liquid

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr. 2021
Accepted
07 Jūl. 2021
First published
07 Jūl. 2021

J. Mater. Chem. C, 2021,9, 11827-11837

Suppressed ion migration in powder-based perovskite thick films using an ionic liquid

P. Ramming, N. Leupold, K. Schötz, A. Köhler, R. Moos, H. Grüninger and F. Panzer, J. Mater. Chem. C, 2021, 9, 11827 DOI: 10.1039/D1TC01554K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements