Issue 20, 2022

Development of an IoT-integrated multiplexed digital PCR system for quantitative detection of infectious diseases

Abstract

For rapid detection of the COVID-19 infection, the digital polymerase chain reaction (dPCR) with higher sensitivity and specificity has been presented as a promising method of point-of-care testing (POCT). Unlike the conventional real-time PCR (qPCR), the dPCR system allows absolute quantification of the target DNA without a calibration curve. Although a number of dPCR systems have previously been reported, most of these previous assays lack multiplexing capabilities. As different variants of COVID-19 have rapidly emerged, there is an urgent need for highly specific multiplexed detection systems. Additionally, the advances in the Internet of Things (IoT) technology have enabled the onsite detection of infectious diseases. Here, we present an IoT-integrated multiplexed dPCR (IM-dPCR) system involving sample compartmentalization, DNA amplification, fluorescence imaging, and quantitative analysis. This IM-dPCR system comprises three modules: a plasmonic heating-based thermal cycler, a multi-color fluorescence imaging set-up, and a firmware control module. Combined with a custom-developed smartphone application built on an IoT platform, the IM-dPCR system enabled automatic processing, data collection, and cloud storage. Using a self-priming microfluidic chip, 9 RNA groups (e.g., H1N1, H3N2, IFZ B, DENV2, DENV3, DENV4, OC43, 229E, and NL63) associated with three infectious diseases (e.g., influenza, dengue, and human coronaviruses) were analyzed with higher linearity (>98%) and sensitivity (1 copy per μL). The IM-dPCR system exhibited comparable analytical accuracy to commercial qPCR platforms. Therefore, this IM-dPCR system plays a crucial role in the onsite detection of infectious diseases.

Graphical abstract: Development of an IoT-integrated multiplexed digital PCR system for quantitative detection of infectious diseases

Supplementary files

Article information

Article type
Paper
Submitted
03 Aug. 2022
Accepted
31 Aug. 2022
First published
01 Sept. 2022

Lab Chip, 2022,22, 3933-3941

Development of an IoT-integrated multiplexed digital PCR system for quantitative detection of infectious diseases

J. W. Choi, W. H. Seo, Y. S. Lee, S. Y. Kim, B. S. Kim, K. G. Lee, S. J. Lee and B. G. Chung, Lab Chip, 2022, 22, 3933 DOI: 10.1039/D2LC00726F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements