Bimetallic ZnSe–SnSe2 heterostructure functionalized separator for high-rate Li–S batteries†
Abstract
Lithium polysulfide (LiPS) shuttling is still the core issue in advancing Li–S battery technologies towards high-power and fast-charging commercialized application. In this work, we demonstrate a confined catalysis of LiPSs by a functionalized separator to suppress shuttling and to improve the high rate capability and cycling stability. An oxygenated carbon nitride (OCN)-supported ZnSe–SnSe2 heterostructure (ZnSe–SnSe2@OCN) was designed for the functionalized separator. The ZnSe–SnSe2@OCN functionalized separator gives a high specific capacity of 609 mA h g−1 at 5 C, favorable cycling stability of 350 cycles at 1 C with a decay rate of 0.11% and coulombic efficiency of 98.6%. It also produces low voltage hysteresis (∼17 mV) after 600 h of cycling without significant voltage fluctuations in a Li|Li symmetric cell. The experimental evidence and density functional theory calculations reveal that the bimetallic ZnSe–SnSe2 sites regulate the density of states at the Fermi level and provide Se–Li, Zn–S and Sn–S chemical bonding interface for LiPS adsorption confinement. This work provides a viable functionalized separator solution for future high-rate Li–S batteries.
- This article is part of the themed collection: 2024 Inorganic Chemistry Frontiers HOT articles