Issue 27, 2014

Topotactic condensation of layer silicates with ferrierite-type layers forming porous tectosilicates

Abstract

Five different hydrous layer silicates (HLSs) containing fer layers (ferrierite-type layers) were obtained by hydrothermal syntheses from mixtures of silicic acid, water and tetraalkylammonium/tetraalkylphosphonium hydroxides. The organic cations had been added as structure directing agents (SDA). A characteristic feature of the structures is the presence of strong to medium strong hydrogen bonds between the terminal silanol/siloxy groups of neighbouring layers. The five-layered silicates differ chemically only with respect to the organic cations. Structurally, they differ with respect to the arrangement of the fer layers relative to each other, which is distinct for every SDA-fer-layer system. RUB-20 (containing tetramethylammonium) and RUB-40 (tetramethylphosphonium) are monoclinic with stacking sequence AAA and shift vectors between successive layers 1a0 + 0b0 + 0.19c0 and 1a0 + 0b0 + 0.24c0, respectively. RUB-36 (diethyldimethylammonium), RUB-38 (methyltriethylammonium) and RUB-48 (trimethylisopropylammonium) are orthorhombic with stacking sequence ABAB and shift vectors 0.5a0 + 0b0 ± 0.36c0, 0.5a0 + 0b0 + 0.5c0 and 0.5a0 + 0b0 ± 0.39c0, respectively. Unprecedented among the HLSs, two monoclinic materials are made up of fer layers which possess a significant amount of ordered defects within the layer. The ordered defects involve one particular Si–O–Si bridge which is, to a fraction of ca. 50%, hydrolyzed to form nests of two [triple bond, length as m-dash]Si–OH groups. When heated to 500–600 °C in air, the HLSs condense to form framework silicates. Although all layered precursors were moderately to well ordered, the resulting framework structures were of quite different crystallinity. The orthorhombic materials RUB-36, -38 and -48, general formula SDA4Si36O72(OH)4, which possess very strong hydrogen bonds (d[O⋯O] ≈ 2.4 Å), transform into a fairly or well ordered CDO-type silica zeolite RUB-37. The monoclinic materials RUB-20 and -40, general formula SDA2Si18O36(OH)2OH, possessing medium strong hydrogen bonds (d[O⋯O] ≈ 2.65 Å) are transformed into poorly ordered framework silicates. Some rules of thumb can be established concerning the successful zeolite synthesis via a topotactic condensation of layered precursors. Favourably, the precursor (i) possesses already a well ordered structure without defects, (ii) contains strong inter-layer hydrogen bonds and does not contain strong intra-layer hydrogen bonds and (iii) contains a suitable cation. The nature of the organic cation (size, geometry, flexibility, thermal stability) plays a key role in the formation of a microporous tectosilicate with well ordered structure. RUB-36 which meets these criteria yields a well ordered condensation product (RUB-37).

Graphical abstract: Topotactic condensation of layer silicates with ferrierite-type layers forming porous tectosilicates

Supplementary files

Article information

Article type
Paper
Submitted
24 Janv. 2014
Accepted
06 Maijs 2014
First published
07 Maijs 2014

Dalton Trans., 2014,43, 10396-10416

Author version available

Topotactic condensation of layer silicates with ferrierite-type layers forming porous tectosilicates

B. Marler, Y. Wang, J. Song and H. Gies, Dalton Trans., 2014, 43, 10396 DOI: 10.1039/C4DT00262H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements