Issue 1, 2016

Precise analysis of calcium stable isotope variations in biological apatites using laser ablation MC-ICPMS

Abstract

Laser ablation (LA) is potentially an interesting technique to measure natural variations (δ44/42Ca) of calcium isotopes in calcium-rich minerals because it allows spatial resolution and avoids micro-sampling and consecutive wet chemistry. We developed a matrix-match sample/standard normalization method and used an Excite 193 nm Photon Machines LA system coupled to a Neptune plus MC-ICPMS to measure δ44/42Ca variations in enamel apatite. First, high precision δ44/42Ca solution mode (SOL) analyses were performed on a series of 5 crystalline igneous apatite and 6 modern tooth enamel samples, which were micro-sampled using a MicroMill device. The δ44/42Ca isotopic values ranged evenly between −0.60 and +0.60‰ (per amu). Second, we sintered by means of a spark plasma sintering technique the bone ash SRM1400 standard and two synthetic apatites (doped or not with Sr). The Ca isotope compositions using LA were measured in the samples in the raster mode along 600 × 85 μm profiles and bracketed with the SRM1400 standard. We obtained very good agreement between SOL and LA measurements, i.e. δ44/42CaLAvs. δ44/42CaSOL slope of 0.960 ± 0.091 (2SE, R2 = 0.971) and null offset at origin (0.012 ± 0.084, 2SE). For all samples, residual values to the 1 : 1 slope were ≤0.1‰ (per amu). However, an unexplained and constant 0.13‰ offset occurred when considering the 43/42Ca ratio, suggesting an uncorrected isobaric interference on 43Ca in the LA mode. We also noticed that the doubly charged strontium (Sr) interference correction is of crucial importance for accurate matching between LA and SOL measurements. In the SOL mode, Sr is discarded by ion chromatography leading to typical 87Sr2+/44Ca+ ratios of 10−5 to 10−6. In the LA mode, this ratio can exceed 10−3. We show that the value set for the 87Sr/86Sr ratio is of importance to correct the Sr interference, and that optimized residuals to the 1 : 1 slope are obtained using a Sr correction that takes into account a mass fractionation factor for doubly charged Sr distinct from that of Ca. We found that deciduous teeth enamel is depleted of Ca heavy isotopes by about 0.35–0.40‰ (per amu) compared to wisdom teeth enamel, a shift compatible with a transition from a milk based diet to a plant and meat based diet.

Graphical abstract: Precise analysis of calcium stable isotope variations in biological apatites using laser ablation MC-ICPMS

Supplementary files

Article information

Article type
Paper
Submitted
23 Jūn. 2015
Accepted
07 Aug. 2015
First published
07 Aug. 2015

J. Anal. At. Spectrom., 2016,31, 152-162

Precise analysis of calcium stable isotope variations in biological apatites using laser ablation MC-ICPMS

T. Tacail, P. Télouk and V. Balter, J. Anal. At. Spectrom., 2016, 31, 152 DOI: 10.1039/C5JA00239G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements