Volume 212, 2018

Fully quantum calculation of the second and third virial coefficients of water and its isotopologues from ab initio potentials

Abstract

Path-Integral Monte Carlo methods were applied to calculate the second, B(T), and the third, C(T), virial coefficients for water. A fully quantum approach and state-of-the-art flexible-monomer pair and three-body potentials were used. Flexible-monomer potentials allow calculations for any isotopologue; we performed calculations for both H2O and D2O. For B(T) of H2O, the quantum effect contributes 25% of the value at 300 K and is not entirely negligible even at 1000 K, in accordance with recent literature findings. The effect of monomer flexibility, while not as large as some claims in the literature, is significant compared to the experimental uncertainty. It is of opposite sign to the quantum effect, smaller in magnitude than the latter below 500 K, and varies from 2% at 300 K to 10% at 700 K. When monomer flexibility is accounted for, results from the CCpol-8sf pair potential are in excellent agreement with the available experimental data and provide reliable B(T) values at temperatures outside the range of experimental data. The flexible-monomer MB-pol pair potential yields B(T) values that are slightly too high compared to experiment. For C(T), our calculations confirm earlier findings that the use of three-body potential is necessary for meaningful predictions. However, due to various uncertainties of the potentials used, especially the three-body ones, we were not able to establish benchmark values of C(T), although our results are in qualitative agreement with available experimental data. The quantum effect, never before included for water, reduces the magnitude of the classical value for H2O by a factor of 2.5 at 300 K and is not entirely negligible even at 1000 K.

Graphical abstract: Fully quantum calculation of the second and third virial coefficients of water and its isotopologues from ab initio potentials

Associated articles

Article information

Article type
Paper
Submitted
05 Maijs 2018
Accepted
11 Jūn. 2018
First published
19 Jūn. 2018

Faraday Discuss., 2018,212, 467-497

Author version available

Fully quantum calculation of the second and third virial coefficients of water and its isotopologues from ab initio potentials

G. Garberoglio, P. Jankowski, K. Szalewicz and A. H. Harvey, Faraday Discuss., 2018, 212, 467 DOI: 10.1039/C8FD00092A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements