Issue 3, 2018

Practical mediated-assembly synthesis of silver nanowires using commercial Camellia sinensis extracts and their antibacterial properties

Abstract

Camellia sinensis is a well-known plant used for health purposes due to its high phenolic compound content and antioxidant properties. For the first time, the infusion of green tea has allowed the growth and stabilization of silver nanowires (AgNWs). Two commercial types of green tea leaf extracts were used for the practical synthesis of AgNWs at low temperature. The use of low concentrations of polyvinylpyrrolidone (PVP) as a directing agent was successful to obtain nanobar/nanorod assemblies that form 2-fold to 10-fold nanowires. FESEM, HRTEM and HAADF microscopies helped identify nanowires of ∼50 nm in diameter and ∼1.3 micron in length. The antibacterial properties of the AgNWs were investigated against Escherichia coli and Staphylococcus aureus. The AgNW morphology may damage the cell wall, accelerating cellular stress that leads to fatal inactivation of infectious microorganisms. This work provides a green approach to the aqueous biosynthesis of AgNWs with promising antibacterial properties.

Graphical abstract: Practical mediated-assembly synthesis of silver nanowires using commercial Camellia sinensis extracts and their antibacterial properties

Article information

Article type
Paper
Submitted
06 Okt. 2017
Accepted
30 Dec. 2017
First published
02 Janv. 2018

New J. Chem., 2018,42, 2133-2139

Practical mediated-assembly synthesis of silver nanowires using commercial Camellia sinensis extracts and their antibacterial properties

M. Flores-González, M. Talavera-Rojas, E. Soriano-Vargas and V. Rodríguez-González, New J. Chem., 2018, 42, 2133 DOI: 10.1039/C7NJ03812G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements