Issue 41, 2018

Dissolution and homogeneous photocatalysis of polymeric carbon nitride

Abstract

As a metal-free conjugated polymer, carbon nitride (CN) has attracted tremendous attention as a heterogeneous (photo)catalyst. By following the example of enzymes, making all of the catalytic sites accessible via homogeneous reactions is a promising approach toward maximizing CN activity, but hindered due to the poor solubility of CN. Herein, we report the dissolution of CN in environmentally friendly methanesulfonic acid, and homogeneous photocatalysis (two biomimetic/pharmaceutical photocatalytic oxidation reactions) driven by CN for the first time with the activity boosted up to 10-times compared to the heterogeneous counterparts. Moreover, facile recycling and reusability, the hallmarks of heterogeneous catalysts, were kept for the homogeneous CN photocatalyst via reversible precipitation using poor solvents. This study opens a new vista for CN in homogeneous catalysis and offers a successful example of a polymeric catalyst that bridges the gap between homo/heterogeneous catalysis.

Graphical abstract: Dissolution and homogeneous photocatalysis of polymeric carbon nitride

Supplementary files

Article information

Article type
Edge Article
Submitted
29 Aug. 2018
Accepted
02 Okt. 2018
First published
02 Okt. 2018
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2018,9, 7912-7915

Dissolution and homogeneous photocatalysis of polymeric carbon nitride

C. Huang, J. Wen, Y. Shen, F. He, L. Mi, Z. Gan, J. Ma, S. Liu, H. Ma and Y. Zhang, Chem. Sci., 2018, 9, 7912 DOI: 10.1039/C8SC03855D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements