Issue 23, 2019

A water-soluble cyclometalated iridium(iii) complex for pH sensing based on aggregation-induced enhanced phosphorescence

Abstract

The novel water-soluble monoanionic Ir(III) complex Na[Ir(ppy)2(SB-COO)] (2; Hppy = phenylpyridine; HSB-COOH = 4-carboxylanilinesalicylaldehyde Schiff base), which was obtained by the reaction of the novel Ir(III) complex [Ir(ppy)2(SB-COOH)] (1) with NaOEt, in its aqueous solution, showed hydrogen ion (H+)-responsive aggregation-induced enhanced phosphorescence (AIEP). Both these complexes exhibited very weak and relatively strong emissions in solution and solid states, respectively. The pH-responsiveness of 2 was evaluated from its emission spectra in aqueous solution in the pH range of 8.7–1.8. Above pH 6, 2 showed weak emission with a maximum at 508 nm. Upon decreasing the pH to 4.7, AIEP with a bathochromic shift to 618 nm was induced by the aggregation of 1, whereby the intensity at 618 nm was increased approximately by 50-fold compared to that at pH 6.0. This enhancement is due to restrictions of the geometrical changes in the six-membered chelate ring of the ancillary ligand (Ir–N–C–C–C–O–) and of the intramolecular rotations in the excited state. The enhanced luminescence originates from spin-forbidden metal-to-ligand–ligand charge transfer (3MLLCT). Below pH 2.8, the emission intensity decreased owing to the decrease in the population of the emissive complex 1 upon dissociation of the ancillary ligand from the Ir(ppy)2 unit.

Graphical abstract: A water-soluble cyclometalated iridium(iii) complex for pH sensing based on aggregation-induced enhanced phosphorescence

Supplementary files

Article information

Article type
Paper
Submitted
10 Dec. 2018
Accepted
08 Marts 2019
First published
20 Marts 2019

Dalton Trans., 2019,48, 8068-8075

Author version available

A water-soluble cyclometalated iridium(III) complex for pH sensing based on aggregation-induced enhanced phosphorescence

K. Ohno, T. Sakata, M. Shiiba, A. Nagasawa and T. Fujihara, Dalton Trans., 2019, 48, 8068 DOI: 10.1039/C8DT04861D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements