Issue 15, 2019

Choosing sides: unusual ultrafast charge transfer pathways in an asymmetric electron-accepting cyclophane that binds an electron donor

Abstract

Constructing functional molecular systems for solar energy conversion and quantum information science requires a fundamental understanding of electron transfer in donor–bridge–acceptor (D–B–A) systems as well as competitive reaction pathways in acceptor–donor–acceptor (A–D–A) and acceptor–donor–acceptor′ (A–D–A′) systems. Herein we present a supramolecular complex comprising a tetracationic cyclophane having both phenyl-extended viologen (ExV2+) and dipyridylthiazolothiazole (TTz2+) electron acceptors doubly-linked by means of two p-xylylene linkers (TTzExVBox4+), which readily incorporates a perylene (Per) guest in its cavity (Per ⊂ TTzExVBox4+) to establish an A–D–A′ system, in which the ExV2+ and TTz2+ units serve as competing electron acceptors with different reduction potentials. Photoexcitation of the Per guest yields both TTz+˙–Per+˙–ExV2+ and TTz2+–Per+˙–ExV+˙ in <1 ps, while back electron transfer in TTz2+–Per+˙–ExV+˙ proceeds via the unusual sequence TTz2+–Per+˙–ExV+˙ → TTz+˙–Per+˙–ExV2+ → TTz2+–Per–ExV2+. In addition, selective chemical reduction of TTz2+ gives Per ⊂ TTzExVBox3+˙, turning the complex into a D–B–A system in which photoexcitation of TTz+˙ results in the reaction sequence 2*TTz+˙–Per–ExV2+ → TTz2+–Per–ExV+˙ → TTz+˙–Per–ExV2+. Both reactions TTz2+–Per+˙–ExV+˙ → TTz+˙–Per+˙–ExV2+ and TTz2+–Per–ExV+˙ → TTz+˙–Per–ExV2+ occur with a (16 ± 1 ps)−1 rate constant irrespective of whether the bridge molecule is Per+˙ or Per. These results are explained using the superexchange mechanism in which the ionic states of the perylene guest serve as virtual states in each case and demonstrate a novel supramolecular platform for studying the effects of bridge energetics within D–B–A systems.

Graphical abstract: Choosing sides: unusual ultrafast charge transfer pathways in an asymmetric electron-accepting cyclophane that binds an electron donor

Supplementary files

Article information

Article type
Edge Article
Submitted
10 Dec. 2018
Accepted
06 Marts 2019
First published
11 Marts 2019
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2019,10, 4282-4292

Choosing sides: unusual ultrafast charge transfer pathways in an asymmetric electron-accepting cyclophane that binds an electron donor

J. Zhou, Y. Wu, I. Roy, A. Samanta, J. F. Stoddart, R. M. Young and M. R. Wasielewski, Chem. Sci., 2019, 10, 4282 DOI: 10.1039/C8SC05514A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements