Issue 35, 2020

Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels

Abstract

In recent years, dynamic, ‘click’ hydrogels have been applied in numerous biomedical applications. Owing to the mild, cytocompatible, and highly specific reaction kinetics, a multitude of orthogonal handles have been developed for fabricating dynamic hydrogels to facilitate ‘4D’ cell culture. The high degree of tunability in crosslinking reactions of orthogonal ‘click’ chemistry has enabled a bottom-up approach to install specific biomimicry in an artificial extracellular matrix. In addition to click chemistry, highly specific enzymatic reactions are also increasingly used for network crosslinking and for spatiotemporal control of hydrogel properties. On the other hand, covalent adaptable chemistry has been used to recapitulate the viscoelastic component of biological tissues and for formulating self-healing and shear-thinning hydrogels. The common feature of these three classes of chemistry (i.e., orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry) is that they can be carried out under ambient and aqueous conditions, a prerequisite for maintaining cell viability for in situ cell encapsulation and post-gelation modification of network properties. Due to their orthogonality, different chemistries can also be applied sequentially to provide additional biochemical and mechanical control to guide cell behavior. Herein, we review recent advances in the use of orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry for the development of dynamically tunable and biomimetic hydrogels.

Graphical abstract: Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels

Article information

Article type
Review Article
Submitted
05 Jūn. 2020
Accepted
16 Jūl. 2020
First published
16 Jūl. 2020

J. Mater. Chem. B, 2020,8, 7835-7855

Author version available

Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels

M. R. Arkenberg, H. D. Nguyen and C. Lin, J. Mater. Chem. B, 2020, 8, 7835 DOI: 10.1039/D0TB01429J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements